SITE CHARACTERISATION FORM

COMPLETING THE FORM

Note:		te: This form requires the latest version of Adobe Acrobat Reader
		and on PC's Windows 7 or later. Windows XP produces errors in calculations
Ste	o 1:	
		Goto Menu Item File, Save As and save the file under a reference relating to the client or the planning application reference if available.
Clea	r Form	Use the Clear Form button to clear all information fields.

Notes:

All calculations in this form are automatic.

Where possible information is presented in the form of drop down selection lists to eliminate potential errors.

Variable elements are recorded by tick boxes. In all cases only one tick box should be activated.

All time record fields must be entered in twenty four hour format as follows: HH:MM

All date formats are DD-MM-YYYY.

All other data fields are in text entry format.

This form can be printed out fully populated for submission with related documents and for your files. It can also be submitted by email.

- **Section 3.2** In this section use an underline _____ across all six columns to indicate the depth at which changes in classification / characteristics occur.
- **Section 3.4** Lists supporting documentation required.
- **Section 4** Select the treatment systems suitable for this site and the discharge route.
- **Section 5** Indicate the system type that it is proposed to install.
- **Section 6** Provide details, as required, on the proposed treatment system.

APPENDIX A: SITE CHARACTERISATION FORM

File Reference:
1.0 GENERAL DETAILS (From planning application)
Prefix: First Name: Surname:
Address: Site Location and Townland:
Number of Bedrooms: Maximum Number of Residents: Comments on population equivalent
Proposed Water Supply: Mains Private Well/Borehole Group Well/Borehole
2.0 GENERAL DETAILS (From planning application)
Soil Type, (Specify Type):
Subsoil, (Specify Type):
Bedrock Type:
Aquifer Category: Regionally Important Locally Important Poor
Vulnerability: Extreme High Moderate Low Groundwater Body: Status
Name of Public/Group Scheme Water Supply within 1 km:
Source Protection Area: ZOC SI SO Groundwater Protection Response:
Presence of Significant Sites (Archaeological, Natural & Historical):
Past experience in the area:
Comments:
(Integrate the information above in order to comment on: the potential suitability of the site, potential targets at risk, and/or any potential site restrictions).

3.0 ON-SITE ASSESSMENT

3.1 Visual Assessment

Landscape Position:			
Slope:	Steep (>1:5)	Shallow (1:5-1:20)	Relatively Flat (<1:20)
Slope Comment			

Surface Features within a minimum of 250m (Distance To Features Should Be Noted In Metres)

Houses:

[
Existing Land Use:		
Existing Lang Use.		

Vegetation Indicators:

Groundwater Flow Direction:

Ground Condition:

Site Boundaries:

3.0 ON-SITE ASSESSMENT

3.1 Visual Assessment (contd.)

Roads:

Outcrops (Bedrock And/Or Subsoil):

Surface Water Ponding:

Lakes:

Beaches/Shellfish Areas:

Wetlands:

Karst Features:

Watercourses/Streams:*

3.0 ON-SITE ASSESSMENT

3.1 Visual Assessment (contd.)

Drainage Ditches:*

Springs:*

Wells:*

Comments:

(Integrate the information above in order to comment on: the potential suitability of the site, potential targets at risk, the suitability of the site to treat the wastewater and the location of the proposed system within the site).

3.2 Trial Hole (should be a minimum of 2.1m deep (3m for regionally important aquifers))

To avoid any accidental damage, a trial hole assessment or percolation tests should not be undertaken in areas which are at or adjacent to significant sites, (e.g. NHAs, SACs, SPAs, and/or Archaeological etc.), without prior advice from National Parks and Wildlife Service or the Heritage Service.

Depth of trial h	nole (m):										
Depth from ground surfaceDepth from ground surfaceto bedrock (m) (if present):to water table (m) (if present):											
Depth of water ingress: Rock type (if present):											
Date and time of excavation:											
Depth of Surface and Subsurface Percolation	Soil/Subsoil Texture &	Plasticity and	Soil	Density/	Colour****	Preferential					
Tests 0.1 m 0.2 m 0.3 m 0.3 m 0.4 m 0.5 m 0.6 m 0.7 m 0.8 m 0.7 m 0.8 m 0.7 m 1.0 m 1.1 m 1.2 m 1.3 m 1.4 m 1.5 m 1.6 m 1.7 m 1.8 m 1.9 m 2.0 m 2.1 m 2.3 m 2.4 m 2.5 m 2.6 m 2.7 m 2.8 m 2.9 m 3.0 m 3.1 m 3.2 m 3.3 m	Classification**	dilatancy***	Structure	Compactness		flowpaths					

Likely Subsurface Percolation Value:

Likely Surface Percolation Value:

Note: *Depth of percolation test holes should be indicated on log above. ('Enter Surface or Subsurface at depths as appropriate). ** See Appendix E for BS 5930 classification.

*** 3 samples to be tested for each horizon and results should be entered above for each horizon.

**** All signs of mottling should be recorded.

3.3(a) Subsurface Percolation Test for Subsoil

Step 1: Test Hole Preparation

Percolation Test	t Hole	1	2	3	
Depth from grour to top of hole (mr					
Depth from grour to base of hole (n					
Depth of hole (mr	m) [B - A]				
Dimensions of hole [length x breadth (mm)]		x	Х	х	
Step 2: Pre-Soak	king Test Hole	S			
Pre-soak start	Date Time				
2nd pre-soak start	Date Time				
Each hole should	be pre-soake	d twice before the test is car	ried out.		
Step 3: Measurin	Ig T ₁₀₀				
Percolation Test	t Hole No.	1	2	3	
Date of test					
Time filled to 400	mm				
Time water level a	at 300 mm				
Time (min.) to drop	100 mm (T ₁₀₀)				
Average T ₁₀₀					

If $T_{_{100}}$ > 480 minutes then Subsurface Percolation value >120 – site unsuitable for discharge to ground

If $T_{100} \le 210$ minutes then go to Step 4; If $T_{100} > 210$ minutes then go to Step 5;

Step 4: Standard Method (where $T_{_{100}} \leq$ 210 minutes)

Percolation Test Hole		1			2			3	
Fill no.	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆t (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆t (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆t (min)
1									
2									
3 Average ∆t Value									
	Average ∆ [Hole No.1		(t ₁)	Average ∆ [Hole No.2		(t ₂)	Average / [Hole No.		(t ₃)
Result of Te	st: Subsurfa	ace Percol	ation Value =	:		(min/25	ō mm)		
Comments:									

Step 5: Modified Method (where $T_{100} > 210$ minutes)

Percolation Test Hole No.		1						Percolation Test Hole No.		2				
Fall of water in hole (mm)	Time Factor = T _f	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	T – Value = 4.45 / K _{fs}		Fall of water in hole (mm)	Time Factor = T _f	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	T – Value = 4.45 / K _{fs}
300 - 250 250 - 200 200 - 150 150 - 100	8.1 9.7 11.9 14.1							300 - 250 250 - 200 200 - 150 150 - 100	8.1 9.7 11.9 14.1					
Average Percolation Test Hole No.	T- Value T- Value Hole 1 = (T_1)						Average Result of Te	T- Valu		Percol	e Hole 2 ation Va min/25	alue =		
Fall of water in hole (mm)	Time Factor = T _f	Start Time hh:mm	Finish Tim§e hh:mm	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	T - Value = 4.45 / K _{rs}		Comments:	:					
300 - 250 250 - 200 200 - 150 150 - 100	8.1 9.7 11.9 14.1						**							
Average	T- Value	e	T- Value	e Hole 3	= (T ₂)									

3.3(b) Surface Percolation Test for Soil

Step 1: Test Hole Preparation

Percolation Test Hole	1	2	3
Depth from ground surface to top of hole (mm)			
Depth from ground surface to base of hole (mm)			
Depth of hole (mm)			
Dimensions of hole [length x breadth (mm)]	Х	Х	Х

Step 2: Pre-Soaking Test Holes

Pre-soak start	Date Time		
2nd pre-soak start	Date Time		

Each hole should be pre-soaked twice before the test is carried out.

Step 3: Measuring T₁₀₀

	1	2	3
Percolation Test Hole No.	r1	r	r
Date of test			
Time filled to 400 mm			
Time water level at 300 mm			
Time to drop 100 mm (T ₁₀₀)			
A			

Average T₁₀₀

If $T_{_{100}} > 480$ minutes then Surface Percolation value >90 – site unsuitable for discharge to ground If $T_{_{100}} \le 210$ minutes then go to Step 4; If $T_{_{100}} > 210$ minutes then go to Step 5;

Step 4: Standard Method (where $T_{_{100}} \leq 210$ minutes)

Percolation Test Hole		1			2			3	
Fill no.	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆T (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆T (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆T (min)
1									
2									
3 Average ∆T Value]							
	Average ∆ [Hole No.1		(T ₁)	Average [Hole No.2		(T ₂)	Average [Hole No.		(T ₃)
Result of Te	st: Surface	Percolatic	n Value =			(min/25 mr	n)		
Comments:									

Step 5: Modified Method (where $T_{100} > 210$ minutes)

Percolation Test Hole No.		1					Percolation Test Hole No.		2				
Fall of water in hole (mm)	Time Factor = T _f	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	T – Value = 4.45 / K _{fs}	Fall of water in hole (mm)	Time Factor = T _f	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	T – Value = 4.45 / K _{rs}
300 - 250 250 - 200 200 - 150 150 - 100	8.1 9.7 11.9 14.1						300 - 250 250 - 200 200 - 150 150 - 100	8.1 9.7 11.9 14.1					
Average	T- Value	9	T- Value	e Hole 1	= (T ₁)		Average Result of	T- Valu			ie Hole 2	_	
Percolation Test Hole No.		3									min/25		
Fall of water in hole (mm)	Time Factor = T _f	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	T – Value = 4.45 / K _{fs}	Comments:	:					
300 - 250 250 - 200 200 - 150 150 - 100	8.1 9.7 11.9 14.1												
Average	T- Value	9	T- Value	e Hole 3	= (T ₂)								

3.4 The following associated Maps, Drawings and Photographs should be appended to this site characterisation form.

- 1. Discovery Series 1:50,000 Map indicating overall drainage, groundwater flow direction and housing density in the area.
- 2. Supporting maps for vulnerability, aquifer classification, soil, subsoil, bedrock.
- 3. North point should always be included.
- 4. (a) Scaled sketch of site showing measurements to Trial Hole location and
 - (b) Percolation Test Hole locations,
 - (c) wells and
 - (d) direction of groundwater flow (if known),
 - (e) proposed house (incl. distances from boundaries)
 - (f) adjacent houses,
 - (g) watercourses,
 - (h) significant sites
 - (i) and other relevant features.
- Site specific cross sectional drawing of the site and the proposed layout¹ should be submitted.
- 6. Photographs of the trial hole, test holes and site including landmarks (date and time referenced).
- 7. Pumped design must be designed by a suitably qualified person.

¹ The calculated percolation area or polishing filter area should be set out accurately on the site layout drawing in accordance with the code of practice's requirements.

4.0 CONCLUSION of SITE CHARACTERISATION

Integrate the information from the desk study and on-site assessment (i.e. visual assessment, trial hole and percolation tests) above and conclude the type of system(s) that is (are) appropriate. This information is also used to choose the optimum final disposal route of the treated wastewater.

Slop	be of proposed infiltration / treatment area:			
Are	all minimum separation distances met?			
	th of unsaturated soil and/or subsoil beneath i drip tubing in the case of drip dispersal system	/el		
Perc	colation test result: Surface:	Sub-surface:		
Not	Suitable for Development		Suitable for Development	
Ider	ntify all suitable options		Discharge Route ¹	
1.	Septic tank system (septic tank and percolation area) (Chapter 7)			
2.	Secondary Treatment System (Chapters 8 and 9) and soil polishing filter (Section 10.1)			
3.	Tertiary Treatment System and Infiltration / treatment area (Section 10.2)			

5.0 SELECTED DWWTS

Propose to install:			
and discharge to:			
Invert level of the trend	h/bed gravel or drip tubing (m)		

Site Specific Conditions (e.g. special works, site improvement works testing etc.

¹ A discharge of sewage effluent to "waters" (definition includes any or any part of any river, stream, lake, canal, reservoir, aquifer, pond, watercourse or other inland waters, whether natural or artificial) will require a licence under the Water Pollution Acts 1977-90. Refer to Section 2.4.

6.0 TREATMENT SYSTEM DETAILS

SYSTEM TYPE: Septi	c Tank System	ns (Chapter 7)					
Tank Capacity (m ³)	P	ercolation Area	I	ounded Percolation Area			
	N	lo. of Trenches		No. of Trenches			
	L	ength of Trenches (m)		_ength of Trenches (m)			
	In	ivert Level (m)		nvert Level (m)			
SYSTEM TYPE: Seco	ndary Treatme	ent System (Chapters	s 8 and 9) and p	olishing filter (Section 10.1)			
Secondary Treatmen (Chapter 8)	t Systems rec	eiving septic tank ef	fluent	Packaged Secondary Treatment Systems receiving raw wastewater (Chapter 9)			
Media Type	Area (m²)*	Depth of Filter	Invert Level	Туре			
Sand/Soil							
Soil				Capacity PE			
Constructed Wetland				Sizing of Primary Compartmer			
Other] m ³			
Polishing Filter*: (Se Surface Area (m ²)*	-		Option 3 - Gr Trench length	avity Discharge			
Option 1 - Direct Disch Surface area (m ²)	narge		Option 4 - Lo				
Option 2 - Pumped Dis	scharge		Pipe Distribut Trench length				
Surface area (m ²)			Option 5 - Dri Surface area				
SYSTEM TYPE: Tertia	ry Treatment	System and infiltrati	on / treatment a	rea (Section 10.2)			
Identify purpose of ter treatment	tiary	Provide performanc demonstrating syste required treatment I	em will provide	Provide design information			
DISCHARGE ROUTE:							
Groundwater	Hydraulic Lo	oading Rate * (I/m ² .d)		Surface area (m ²)			
Surface Water **	Discharge F	Rate (m ³ /hr)					

 * Hydraulic loading rate is determined by the percolation rate of subsoil

** Water Pollution Act discharge licence required

6.0 TREATMENT SYSTEM DETAILS

QUALITY ASSURANCE:

Installation & Commissioning

On-going Maintenance

7.0 SITE ASSESSOR DETAILS

Company:
Prefix: First Name: Surname:
Address:
Qualifications/Experience:
Date of Report:
Phone: E-mail
Indemnity Insurance Number:

Signature: