Meath County Council

Proposed Burial Ground and Playground Development at Gormanstown / Stamullen, Co. Meath

Water Services Report

Document Control Sheet

Client:	Meath County Council
Project Title:	Proposed Burial Ground and Playground Development at Gormanstown / Stamullen, Co. Meath
Document Title:	Water Services Report
File Name:	23607-JBB-00-XX-RP-C-00002_Water_Services_Report_P02

Table of Contents	List of Tables	List of Figures	Pages of Text	Appendices
Y	Ν	Ν	7 No.	3 No.

	Document	t Revision		Document Verification					
Issue Date)	Revision Code	Suitability Code	Author	Checker	Reviewer	Approver	Peer Review		
14/04/2023	P01	S0	LR	SW	LR	SW	N/A		
09/05/2023	P02	S0	LR	SW	LR	SW	N/A		

Table of Contents

SECTION 1:	INTRODUCTION	1
SECTION 2:	SURFACE WATER DESIGN	1
SECTION 3:	WATER SUPPLY	4
SECTION 4:	FOUL EFFLUENT DISPOSAL	4
SECTION 5:	FLOOD RISK ASSESSMENT (FRA) REPORT	4
SECTION 6:	RELEVANT DRAWINGS	4

APPENDIX 1: SUDS MEASURES CONSIDERED

APPENDIX 2: SURFACE WATER CALCULATIONS

APPENDIX 3: STORMTECH DESIGN MANUAL

SECTION 1: Introduction

1.1 Meath County Council intend to submit the Part 8 Planning Application for the Proposed Burial Ground and Playground, including associated roads, a caretaker building with public toilets, footpaths, parking, landscaping, site services, SuDS measures and sundry related works on the 1.5 ha northern portion of the 2.17 ha site. The northern portion of 1.5 ha is greenfield, while the southern portion of 0.67 ha is an existing woodland, which is to be retained with the addition of gravel footpaths.

The proposed development site is located approximately 1km east to Stamullen village in County Meath and immediately to the west of the M1 motorway shown in Figure 1 below.

Figure 1: Location of Proposed Development (Source: Google Maps, annotation by J.B. Barry & Partners)

SECTION 2: SURFACE WATER DESIGN

2.1 Details of the proposed surface water network and SuDS measures for the proposed development are shown on drawings 23607-JBB-00-XX-DR-C-01401_STORM_WATER_LAYOUT_P01 and 23607-JBB-00-XX-DR-C-01402_SuDS_DEVICES_LAYOUT_P01. It is proposed to discharge the attenuated flows from the proposed development to an existing River Delvin which is adjacent to the proposed development site. Refer to Figure 2 below.

Figure 2: Hydrological Features of the Area (Source: Google Maps, annotation by J.B. Barry & Partners)

2.2 The SuDS strategy for the development will provide a comprehensive approach to the management of surface water on the site both for water quality and water quantity. The treatment train approach has been adopted for the design of the surface water system for development. This approach uses suitable SuDS measures in providing source control. SuDS measures considered are outlined in 2.3 below and detailed in Appendix 1. The surface water treatment train is defined in Appendix A, Glossary, Volume 3, Environmental Management, Greater Dublin Strategic Drainage Study as follows:

'A series of SuDS, each designated to treat a different aspect of runoff that are implemented together to maximise their effectiveness'.

The SuDS measures proposed for this Development are discussed under the following headings:

- Source Control
- Site Control
- 2.3 **Source Control.** Source Control measures can be defined as "*the control of runoff at or near its source"* (in the case of this development the building, roads, footpaths, hard standings, carparks, and playground).

The source control measures proposed for the development are shown in Table 1 below:

Source Control Measures	Location / Treatment Area
Permeable Paving	Parking spaces.
Bio Retention/Rain Garden	Tree pits and open space areas.
Filter Drain	Retaining Elements /Footpaths

Table 1: Source Control Measures

Permeable Paving is proposed to cater for flows generates from all carparking spaces. It should be noted that tanked permeable paving (fully lined) is proposed subject to confirmation of infiltration rates in the surrounding areas which could potentially cause flows to permeate to the lower burial ground. Untanked permeable paving will be considered if suitable ground conditions are established during construction.

A Bioretention / Rain Garden is proposed to cater for flows generates from the roof of the caretaker's Office and Public Toilets. Bioretention areas are proposed to cater for the footpaths. Filter Drains are proposed to cater for the flows generated from the playground, at the retaining elements and from the footpaths in the burial ground area.

A typical cross-section of the SuDS devices makeup is shown in drawing 23607-JBB-00-XX-DR-C-01404_typical_ SuDS_devices_details_P01.

There is provision for overflows from the above source controls to the proposed storm water sewers in the road carriageways.

2.4 **Site Controls.** Site control is defined as: "a control which is designed to control storm water quality and/ or quantity for a small development or site".

SuDS measures proposed as site controls within public road carriageways and the public open space include the following:

- Stormtech Detention / Attenuation
- Detention / Infiltration Pond
- Silt and Hydrocarbon Interceptor.

Flows from the proposed development will be connected via the SUDS measures and the storm sewer network to the Stormtech System and Pond for water quality and attenuation/infiltration purposes. 100% of the runoff will be generated from the hardstanding areas, including roof, roads, footpaths, playground, carparking areas. 20% of the runoff will be generated from the Burial ground area.

The flows will be attenuated in the Stormtech subsurface detention/attenuation systems and the Pond for the 100-year critical storm event + 20% for climate change prior to discharge to the existing River Delvin via the hydrocarbon interceptor. The Stormtech system will have an effective storage volume of 120m³ and the Pond will have an effective storage volume of 350m³, providing a combined total effective storage volume of 470m³. The attenuated runoff rate will be limited by Hydrobrake flow control device to 3 l/sec (which is 2l/s/ha for the 1.5ha developed site) for the 100-year critical storm event. Refer to Appendix 2 for calculations.

- 2.5 The Stormtech system has been installed nationwide and will incorporate the following:
 - Pre-treatment control (deep sump manhole with a 90-degree bend on the outlet) upstream of the system.
 - Isolator row a patented technique for Total Suspended Solids (TSS) removal.

The pre-treatment and isolation systems are readily inspected and maintained (via the jet vac process). Relevant extracts from the Stormtech design manual on inspection and maintenance are included in Appendix 3. Further information on Stormtech is available on www.stormtech.com.

 2.6 The surface water run-off from the Development will pass through a minimum of 2 SuDS devices. This treatment approach for the proposed SuDS measures meets with the requirement of Volume
2, New Development, Greater Dublin Strategic Drainage Study.

- 2.7 The surface water drainage system shall be in accordance with the "Regional Code of Practice for Drainage Works, Version 6, April 2006.
- 2.8 The foul and storm sewer networks will be on separate systems. No surface water will be discharged into the foul sewer system.

SECTION 3: WATER SUPPLY

3.1 A Water Supply is designed by others.

SECTION 4: FOUL EFFLUENT DISPOSAL

4.1 Foul Effluent Disposal is designed by others.

SECTION 5: FLOOD RISK ASSESSMENT (FRA) REPORT

5.1 A Detailed Flood Risk Assessment is included as a separate document in the Part 8 Planning Application Documentation. In summary, the northern portion of the development site, where the majority of the development will occur, lies within Flood Zone C - where the probability of flooding is low (1 in 1000 for flooding). The southern portion of the proposed development site, which will consist of existing woodlands with gravel walkways and an infiltration pond and stormtech, lies within Flood Zone A - where the risk of flooding is greatest. The development on the northern portion of the site is considered 'Less vulnerable development' and the development on the southern portion of the site is considered 'water compatible development'. From all above it was identified that a detailed flood risk assessment and Justification Test was not required, however, it was carried out in order to assess the potential increase in flood risk elsewhere and to ensure the development is adequately protected. As a result of the Flood Risk Assessment, adequate compensatory storage will be provided as part of the amended landscape in the existing woodlands due to the loss of the flood plain for the construction of a pond and Stormtech within the southern portion of the development.

SECTION 6: RELEVANT DRAWINGS

- 6.1 The following relevant drawings are included with the Part 8 Planning Application Documentation:
 - 23607-JBB-00-XX-DR-C-01400_ROAD_LEVELS_P02
 - 23607-JBB-00-XX-DR-C-01401_STORM_WATER_LAYOUT_P02
 - 23607-JBB-00-XX-DR-C-01402_ SuDS_DEVICES_LAYOUT_P02
 - 23607-JBB-00-XX-DR-C-01403_SURFACE_WATER_DETAILS_P01
 - 23607-JBB-00-XX-DR-C-01404_TYPICAL_ SuDS_DEVICES_DETAILS_P01

APPENDIX 1: SUDS MEASURES CONSIDERED In accessing the various "SuDS Systems and techniques available for use in the proposed development, the "Greater Dublin Strategic Drainage Study" (GDSDS) and "CIRIA Document 522 – Sustainable Urban Drainage Systems" were consulted to establish a suitable set of drainage features (**treatment train**)

Details of the **<u>SuDS measures considered in principle</u>** are set out in the table below.

Type of System	Device	Primary Function	Primary Characteristics	Consideration	Comments
Source Control	Avoiding foul connections to storm systems	Avoid direct pollution of the storm system	Maintaining the principle of separate drainage systems	Incorporated	Separate foul and surface water drainage systems are provided. CCTV survey and "As Built" mapping of the drainage system on completion by the Contractor to ensure adherence to this principle.
Pollution Prevention	Management of pollution sources	Prevention of polluted runoff.	Interception of pollutants in runoff	Incorporated	Discharge surface water flows to the existing River Delvin through the Class 1 Bypass Separator to remove any potential pollutants.
Infiltration Systems	Underground Detention/Infiltration System	Minimize runoff, and flow attenuation to encourage stormwater to soak into the ground while filtering pollutants	Permeable features allowing Infiltration and attenuation of flows	Incorporated	Surface water drainage is to be collected on-site via "Stormtech" underground detention/infiltration system, which is connected to the pond downstream, to cater for the 1 in 100-year critical storm event plus 20% climate change.
Source Control	Bio Retention	Minimize runoff, flow attenuation encourages stormwater to soak into the ground while filtering pollutants	The previous surface on footpaths	Incorporated	Bio retention (tree) pits and Rain Garden will be provided to cater for run-off from footpaths/pathways. Bio retention has the potential to cater for 15m ³ run-off/ day.
Source Control	Permeable Pavement. Minimising impermeable areas	Minimize runoff and wash off pollutants	The previous surface to parking areas.	Incorporated	Permeable paving is to be incorporated in all parking areas. High-level overflow to be surface water system to be incorporated to cater for extreme storm events.
Source Control	Green-Roof	Minimize runoff and wash off pollutants	Interception of pollutants in runoff and attenuation of flows	Not Incorporated	Not Suitable
Infiltration Systems	Infiltration trenches, swales	Encourage stormwater to soak into the ground while filtering pollutants	Permeable features allowing Infiltration	Not Incorporated	Not Incorporated due to site constraints
Infiltration Systems	Ponds, Basins	Encourage stormwater to soak into the ground while filtering pollutants	Permeable features allowing Infiltration	Incorporated	Surface water drainage is to be collected on-site via detention/infiltration Pond, which is connected to the upstream Stormtech, to cater for the 1 in 100-year critical storm event plus 20% climate change.
Source Control	Rainwater Harvesting	Rainwater Harvesting	Minimize runoff, flow attenuation, water re-use	Not Incorporated	Not Incorporated. Surface water drainage flows to be collected on site via "Stormtech" underground detention system, Pond and other SuDS measures.

APPENDIX 2: SURFACE WATER CALCULATIONS

J.B. Barry & Partners Ltd		Page 1										
Classon House	BURIAL GROUND DEVELOPMENT											
Dundrum Business Park	AT GORMANSTON / STAMULLEN											
Dublin 14		Micco										
Date 14/04/2023 14:34												
File 23607-STAMULLEN SWS-MICRODRAINGE P01(Drainage											
Innowyze Network 2020 1 2												
STORM SEWER DESIGN by the Modified Rational Method												
Desi												
Pipe Sizes ST												
FSR Rainfall												
Return Period (years) 2 PIMP (%)	100										
M5-60 (mm) 16.000 Add Flow / Climate Change (%)	0										
Ratio	R 0.300 Minimum Backdrop Height (m)	0.200										
Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m)	1.500										
Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m)	1.200										
Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s)	1.00										
Volumetric Runoff Coeff	. 0.750 Min Slope for Optimisation (1:X)	500										
Desig	ned with Level Soffits											
Networl	k Design Table for Storm											
« - India	cates pipe capacity < flow											
DN Length Fall Slope I Area 1	F Base & HYD DIA Section Type	Auto										
(m) (m) $(1:X)$ (b_2) (m)	r_{1} r_{2} r_{3} r_{1} r_{2} r_{3} r_{1} r_{2} r_{3} r_{3	Auto										
		Jesign										
s1.000 32.492 0.357 91.0 0.034	5.00 0.0 0.600 o 225 Pipe/Conduit	P										
S1.001 14.978 0.164 91.3 0.040	0.00 0.0 0.600 o 225 Pipe/Conduit	ř										
	-											
s2.000 33.128 0.221 149.9 0.047	5.00 0.0 0.600 o 225 Pipe/Conduit	a										
		-										
S1.002 7.275 0.049 148.5 0.108	0.00 0.0 0.600 o 225 Pipe/Conduit	ď										
S1.003 54.902 0.366 150.0 0.011	0.00 0.0 0.600 o 225 Pipe/Conduit	ď										
s3.000 35.962 0.507 70.9 0.023	5.00 0.0 0.600 o 225 Pipe/Conduit	ð										
s3.001 15.456 0.218 70.9 0.039	0.00 0.0 0.600 o 225 Pipe/Conduit	0										
S4.000 27.222 0.545 49.9 0.114	5.00 0.0 0.600 o 225 Pipe/Conduit	Ö										
s3.002 13.343 0.188 71.0 0.082	0.00 0.0 0.600 o 225 Pipe/Conduit	ď										
s1.004 39.705 0.266 149.3 0.084	0.00 0.0 0.600 o <u>300</u> Pipe/Conduit	A										
	± ·	•										
Ne	twork Results Table											
PN Rain T.C. US/IL Σ I	Area Σ Base Foul Add Flow Vel Cap Fl	.ow										
(mm/hr) (mins) (m) (ha) Flow $(1/s)$ $(1/s)$ $(1/s)$ (m/s) $(1/s)$ $(1/s)$	/s)										
S1 000 18 85 5 30 21 860		ΔΔ										
S1 001 48 21 5 58 21 503	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 5										
51.001 70.21 J.J0 21.J03	5.5,5 5.6 5.6 5.0 5.0 1.5/ 54.4 S											
S2.000 48.41 5.52 21 560	0.047 0.0 0.0 0.0 1.07 42 4	6.2										
S1.002 47.82 5.69 21.339	0.228 0.0 0.0 0.0 1.07 42.6 29	9.5										
\$1.003 45.12 6.55 21.290	0.239 0.0 0.0 0.0 1.07 42.4 20	9.5										
		-										
\$3.000 48.88 5.39 23.260	0.023 0.0 0.0 0.0 1.55 61.8	3.1										
s3.001 48.30 5.55 22.753	0.063 0.0 0.0 0.0 1.56 61.8 8	8.2										

©1982-2020 Innovyze

0.0

0.0

0.0 0.0

0.0

0.0

0.0 1.86 73.8 15.3

0.0 1.55 61.8 33.5

0.0 1.28 90.8 68.8

0.114

0.259

0.582

5.24 23.080

5.69 22.535

7.06 20.924

S4.000

S3.002

S1.004

49.39

47.81

43.67

J.B. Barry & Partners Ltd		Page 2
Classon House	BURIAL GROUND DEVELOPMENT	
Dundrum Business Park	AT GORMANSTON / STAMULLEN	
Dublin 14		Mirro
Date 14/04/2023 14:34	Designed by LORETA RAMANAUSKE	Dcainago
File 23607-STAMULLEN_SWS-MICRODRAINGE_P01(Checked by SW	Drainage
Innovyze	Network 2020.1.3	•

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Ba Flow	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S5.000	47.497	0.317	149.8 150.0	0.039	5.00		0.0	0.600	0	225 225	Pipe/Conduit Pipe/Conduit	ð
s1.005 s1.006 s1.007 s1.008 s1.009	23.257 9.292 17.547 40.077 42.700	0.155 0.062 0.117 0.067 0.166	150.0 149.9 150.0 600.0 257.2	0.121 0.084 0.000 0.000 0.000	0.00 0.00 0.00 0.00		0.0 0.0 0.0 0.0	0.600 0.600 0.600 0.600 0.600		375 375 375 450 450	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	0 0 0
S1.009	37.191	0.700	53.1	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	-

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
S5.000	47.64	5.74	20.200	0.039	0.0	0.0	0.0	1.07	42.4	5.0
S5.001	45.67	6.36	19.883	0.075	0.0	0.0	0.0	1.07	42.4	9.3
s1.005	42.97	7.33	19.619	0.778	0.0	0.0	0.0	1.48	163.1	90.5
S1.006	42.70	7.43	19.464	0.862	0.0	0.0	0.0	1.48	163.2	99.7
S1.007	42.20	7.63	18.050	0.862	0.0	0.0	0.0	1.48	163.2	99.7
S1.008	40.30	8.44	17.933	0.862	0.0	0.0	0.0	0.82	130.8	99.7
S1.009	39.09	9.01	17.866	0.862	0.0	0.0	0.0	1.26	200.9	99.7
S1.010	38.40	9.35	17.700	0.862	0.0	0.0	0.0	1.80	71.5«	99.7

J.B. Barry & Partners Ltd		Page 3
Classon House	BURIAL GROUND DEVELOPMENT	
Dundrum Business Park	AT GORMANSTON / STAMULLEN	
Dublin 14		Micro
Date 14/04/2023 14:34	Designed by LORETA RAMANAUSKE	Dcainago
<pre>File 23607-STAMULLEN_SWS-MICRODRAINGE_P01(</pre>	Checked by SW	Diamaye
Innovyze	Network 2020.1.3	

Manhole Schedules for Storm												
MH Name	MH CL (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1.10	23.500	1.640	Open	Manhole	1200	S1.000	21.860	225				
S1.9	23.850	2.347	Open	Manhole	1200	s1.001	21.503	225	S1.000	21.503	225	
S1.8A	23.250	1.690	Open	Manhole	1200	s2.000	21.560	225				
S1.8	23.730	2.391	Open	Manhole	1200	s1.002	21.339	225	S1.001	21.339	225	
									S2.000	21.339	225	
S1.7	23.600	2.310	Open	Manhole	1200	S1.003	21.290	225	S1.002	21.290	225	
S1.6C	24.660	1.400	Open	Manhole	1200	s3.000	23.260	225				
S1.6B	24.120	1.367	Open	Manhole	1200	s3.001	22.753	225	S3.000	22.753	225	
S1.6D	24.280	1.200	Open	Manhole	1200	S4.000	23.080	225				
S1.6A	23.850	1.315	Open	Manhole	1200	s3.002	22.535	225	S3.001	22.535	225	
									S4.000	22.535	225	
S1.6	23.730	2.806	Open	Manhole	1200	S1.004	20.924	300	S1.003	20.924	225	
									S3.002	22.347	225	1348
S1.5B	21.400	1.200	Open	Manhole	1200	S5.000	20.200	225				
S1.5A	22.130	2.247	Open	Manhole	1200	s5.001	19.883	225	S5.000	19.883	225	
S1.5	22.590	2.971	Open	Manhole	1350	S1.005	19.619	375	S1.004	20.658	300	964
									S5.001	19.619	225	
S1.4	22.090	2.626	Open	Manhole	1350	S1.006	19.464	375	S1.005	19.464	375	
S1.3	21.300	3.250	Open	Manhole	1350	S1.007	18.050	375	S1.006	19.402	375	1352
S1.3A	20.450	2.517	Open	Manhole	1350	S1.008	17.933	450	S1.007	17.933	375	
S1.2	19.900	2.034	Open	Manhole	1350	S1.009	17.866	450	S1.008	17.866	450	
S1.1	19.700	2.000	Open	Manhole	1350	S1.010	17.700	225	S1.009	17.700	450	
S	18.000	1.000	Open	Manhole	0		OUTFALL		S1.010	17.000	225	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S1.10	715578.968	766358.806	715578.968	766358.806	Required	/
S1.9	715550.261	766343.586	715550.261	766343.586	Required	1
S1.8A	715586.509	766346.417	715586.509	766346.417	Required	
S1.8	715557.476	766330.460	715557.476	766330.460	Required	1
S1.7	715560.747	766323.963	715560.747	766323.963	Required	
S1.6C	715469.874	766315.423	715469.874	766315.423	Required	
S1.6B	715487.242	766283.934	715487.242	766283.934	Required	

J.B. Barry & Partners Ltd		Page 4
Classon House	BURIAL GROUND DEVELOPMENT	
Dundrum Business Park	AT GORMANSTON / STAMULLEN	
Dublin 14		Micro
Date 14/04/2023 14:34	Designed by LORETA RAMANAUSKE	Dcainago
File 23607-STAMULLEN_SWS-MICRODRAINGE_P01(Checked by SW	Diamage
Innovyze	Network 2020.1.3	

|--|

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S1.6D	715487.626	766315.154	715487.626	766315.154	Required	Ň
S1.6A	715500.809	766291.338	715500.809	766291.338	Required	
S1.6	715512.658	766297.474	715512.658	766297.474	Required	-
S1.5B	715605.593	766302.701	715605.593	766302.701	Required	- \
S1.5A	715563.887	766279.973	715563.887	766279.973	Required	· · · · ·
S1.5	715528.979	766261.279	715528.979	766261.279	Required	1
S1.4	715539.761	766240.673	715539.761	766240.673	Required	1
S1.3	715544.154	766232.485	715544.154	766232.485	Required	1
S1.3A	715559.596	766240.819	715559.596	766240.819	Required	_
S1.2	715594.742	766260.078	715594.742	766260.078	Required	
S1.1	715636.050	766249.265	715636.050	766249.265	Required	
S	715650.096	766214.828			No Entry	, \ \

J.B. Barry & Partners Ltd								Page 5	
Classon House BURIAL GROUND DEVELOPMENT									
Dundrum Business Park				AT	GORMANST	on / st	AMULLEN		
Dublin 14						/			Micco
Date $11/01/2023$ 14.34				Des	igned by	MICIO			
	C MTCD			(Cho	ared by	CM	INDANA 05115		Drainage
TER 23607-STAMOLLEN_SW	5-MICR	ODRAIN	NGE_FUI		cked by	5W 0 1 2			_
тшоуда				Net	WOLK 202	0.1.3			
			P	TPELINE	SCHEDULES	s for St	orm		
			-		00111201110	202 0	<u>502111</u>		
				Ups	tream Mar	nhole			
PN	Hyd	Diam	MH C	C.Level 1	Level D	.Depth	MH	MH DIAM., L*W	
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)	
~1 .0.0		0.05	~1 10	00 500	01 0 00			1000	
S1.000	0	225	SI.10	23.500	21.860	1.415	Open Manhole	1200	
51.001	0	223	51.9	23.830	21.505	2.122	open Mannoie	1200	
52.000	0	225	S1.8A	23,250	21,560	1,465	Open Manhole	1200	
S1.002	0	225	S1.8	23.730	21.339	2.166	Open Manhole	1200	
S1.003	0	225	S1.7	23.600	21.290	2.085	Open Manhole	1200	
S3.000	0	225	S1.6C	24.660	23.260	1.175	Open Manhole	1200	
\$3.001	0	225	S1.6B	24.120	22.753	1.142	Open Manhole	1200	
C4.000		0.05	01 (D	24 200	22.000	0 075	Orana Marshalla	1000	
54.000	0	225	SI.6D	24.280	23.080	0.975	Open Mannole	1200	
53.002	0	225	S1.6A	23.850	22.535	1.090	Open Manhole	1200	
53.002	0	220	01.011	20.000	22.000	1.000	open namore	1200	
S1.004	0	300	S1.6	23.730	20.924	2.506	Open Manhole	1200	
							-		
\$5.000	0	225	S1.5B	21.400	20.200	0.975	Open Manhole	1200	
\$5.001	0	225	S1.5A	22.130	19.883	2.022	Open Manhole	1200	
S1.005	0	375	S1.5	22.590	19.619	2.596	Open Manhole	1350	
S1.006	0	375	S1.4	22.090	19.464	2.251	Open Manhole	1350	
S1.007	0	375	SI.3	21.300	18.050	2.8/5	Open Manhole	1350	
S1.008	0	450	SI.JA	20.450	17.933	2.06/	Open Manhole	1350	
S1.009	0	450	S1.2	19.900	17.866	1.584	Open Manhole	1350	
S1.010	0	225	S1.1	19.700	17.700	1.775	Open Manhole	1350	
				Down	stream Ma	anhole			
				<u></u>	0020000 110				
PN	Length	Slope	MH	C.Level	I.Level	D.Dept	h MH	MH DIAM., L*W	Ň
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)	
21 000	~~ . ~ ~		~ ~ 1 ~ 0		01 500	0.10		100	~
S1.000	32.492	91.0) S1.9	23.850	21.503	2.12	2 Open Manhole	e 1200	
51.001	14.9/8	91.3	51.8	23.730	21.339	2.16	6 Open Mannole	1200	J
S2 000	33 128	149 9	S1 8	23 730	21 339	2 16	6 Open Manhole	<u> </u>	C
52.000	00.120	± 19•9	01.0	20.700	21.000	2.10		1200	
S1.002	7.275	148.5	5 S1.7	23.600	21.290	2.08	5 Open Manhole	e 1200	C
S1.003	54.902	150.0	s1.6	23.730	20.924	2.58	1 Open Manhole	e 1200	C
S3.000	35.962	70.9	9 S1.6B	24.120	22.753	1.14	2 Open Manhole	e 1200	C
S3.001	15.456	70.9	9 S1.6A	23.850	22.535	1.09	0 Open Manhole	e 1200	C
									_
S4.000	27.222	49.9	9 S1.6A	23.850	22.535	1.09	0 Open Manhole	e 1200	D
63 000	1 2 2 4 2	71 0	01 6	22 720	22 247	1 1 5	Onen Menhels	100	2
53.002	13.343	/1.0	51.0	23.730	22.34/	1.15	8 Open Mannole	1200	J
S1 004	39 705	149 3	s 15	22 590	20 658	1 63	2 Open Manhole	<u> </u>	C
51.001		- 17.0	01.0	22.000	20.000	1.00	_ 02011 110111010		-
\$5.000	47.497	149.8	s1.5A	22.130	19.883	2.02	2 Open Manhole	e 1200	C
\$5.001	39.598	150.0	s1.5	22.590	19.619	2.74	6 Open Manhole	e 1350	C
S1.005	23.257	150.0	S1.4	22.090	19.464	2.25	1 Open Manhole	e 1350	C
S1.006	9.292	149.9	9 S1.3	21.300	19.402	1.52	3 Open Manhole	e 1350	C
S1.007	17.547	150.0	S1.3A	20.450	17.933	2.14	2 Open Manhole	e 1350	C
S1.008	40.077	600.0	S1.2	19.900	17.866	1.58	4 Open Manhole	e 1350	C
S1.009	42.700	257.2	s1.1	19.700	17.700	1.55	0 Open Manhole	e 1350	C
S1.010	37.191	53.1	. S	18.000	17.000	0.77	5 Open Manhole	e (C

©1982-2020 Innovyze

J.B. Barry & Partners Ltd		Page 6
Classon House	BURIAL GROUND DEVELOPMENT	
Dundrum Business Park	AT GORMANSTON / STAMULLEN	
Dublin 14		Mirro
Date 14/04/2023 14:34	Designed by LORETA RAMANAUSKE	Dcainago
File 23607-STAMULLEN_SWS-MICRODRAINGE_P01(Checked by SW	Drainage
Innovyze	Network 2020.1.3	•

Pipe Number	РІМР Туре	PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
1.000	User	-	100	0.034	0.034	0.034
1.001	User	-	100	0.040	0.040	0.040
2.000	User	-	100	0.047	0.047	0.047
1.002	User	-	100	0.108	0.108	0.108
1.003	User	-	100	0.011	0.011	0.011
3.000	User	-	100	0.023	0.023	0.023
3.001	User	-	100	0.039	0.039	0.039
4.000	User	-	100	0.114	0.114	0.114
3.002	User	-	100	0.082	0.082	0.082
1.004	User	-	100	0.084	0.084	0.084
5.000	User	-	100	0.039	0.039	0.039
5.001	User	-	100	0.036	0.036	0.036
1.005	User	-	100	0.064	0.064	0.064
	Classification	Graves	20	0.286	0.057	0.121
1.006	User	-	100	0.044	0.044	0.044
	Classification	Graves	20	0.203	0.041	0.084
1.007	-	-	100	0.000	0.000	0.000
1.008	-	-	100	0.000	0.000	0.000
1.009	-	-	100	0.000	0.000	0.000
1.010	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				1.253	0.862	0.862

Area Summary for Storm

Free Flowing Outfall Details for Storm

Outfall Pipe Numbe	Outfall er Name	c.	Level (m)	I.	Level (m)	Ι.	Min Level (m)	D,L (mm)	W (mm)	
S1.01	.0 S		18.000		17.000		0.000	0	0	

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins)	0	Inlet Coeffiecient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (l/s)	0.000	Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 2 Number of Real Time Controls 0

Synthetic Rainfall Details

	Rainfall Model			FSR		Prof	ile Type	Summer
Return	Period (years)			100		Cv	(Summer)	0.750
	Region	Scotland	and	Ireland		Cv	(Winter)	0.840
	M5-60 (mm)			16.500	Storm	Duratio	n (mins)	30
	Ratio R			0.300				

J.B. Barry & Partners Ltd			Page 7
Classon House	BURIAL GROUND DEVELOR	PMENT	
Dundrum Business Park	AT GORMANSTON / STAM	ULLEN	
Dublin 14			Micco
Date 14/04/2023 14:34	Designed by LORETA BA	AMANAUSKE	
File 23607-STAMULLEN SWS-MICRODRAINGE P01(Checked by SW		Drainage
Innovyze	Network 2020.1.3		
<u>O</u> 1	line Controls for Storm		
Hudro-Proko® Ontinum M	pholo, S1 1 DS/DN, S1 (010 $Volume (m^3) \cdot 9$	Λ
nyuro-Brakes opermum ma	111101e. 31.1, D3/FN. 31.0	<u>510, VOLUME (M.). 5.</u>	<u> </u>
	Jnit Reference MD-SHE-00)70-3000-2000-3000	
D	esign Head (m)	2.000	
Des	ign Flow (l/s)	3.0	
	Flush-Flo™	Calculated	
	Objective Minimise	9 upstream storage	
	Application	Surface	
	Sump Available	Yes	
	Diameter (mm)	70	
In	vert Level (m)	17.700	
Minimum Outlet Pipe	Diameter (mm)	100	
Suggested Manhole	Diameter (mm)	1200	
Control Points Head (m)	Flow (l/s) Control	Points Head ((m) Flow (l/s)
Design Point (Calculated) 2.000	3.0	Kick-Flo® 0.6	530 1.8
Flush-Flo TM 0.310	2.2 Mean Flow ove	er Head Range	- 2.3
	'		
The hydrological calculations have been b	ased on the Head/Dischar	ge relationship for	the Hydro-Brake®
Optimum as specified. Should another typ	e of control device othe	er than a Hydro-Brake	e Optimum® be utilise
then these storage routing calculations w	ill be invalidated		
Depth (m) Flow (1/s) Depth (m) Flow (1/s)	Depth (m) Flow (l/s) De	epth (m) Flow (l/s)	Depth (m) Flow (1/s)
0.100 1.0 0.000 2.0	2 000 2 0	4 000 4 1	7 000 5 4
	2.000 3.0	4.000 4.1	7 500 5.4
	2.200 5.1	5 000 4.4	7.500 5.0 9.000 5.7
	2.400 3.3	5 500 / 2	8 500 5.7
	3 000 3 4	6 000 5 0	9 000 6 1
	3 500 3.0	6 500 5 2	9 500 6 2
1.000 1.9 1.000 2.9	5.500 5.9	J.Z	5.500 0.2

-		
J.B. Barry & Partners Ltd		Page 8
Classon House	BURIAL GROUND DEVELOPMENT	
Dundrum Business Park	AT GORMANSTON / STAMULLEN	
Dublin 14		Micco
Date 14/04/2023 14:34	Designed by LORETA RAMANAUSKE	
File 23607-STAMULLEN SWS-MICRODRAINGE P01(Checked by SW	Digiligra
	Network 2020 1 3	
	Network 2020.1.5	
Stora	as Structures for Storm	
	ge beraecareb for beorm	
Cellular Stor	age Manhole: S1 2, DS/PN: S1 009	
	lge Mainiore. 51.2, 55/1N. 51.005	
Tn	vert Level (m) 17.866 Safety Factor 2.0	
Infiltration Coefficier	t Base $(m/br) = 0.00000$ Porosity 0.69	
Infiltration Coefficier	t Side (m/hr) = 0.00000	
Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m^2) Inf. Area (m^2) Depth (m) Area (m^2)	Inf. Area (m ²)
		1111: 111:Cu (iii)
0.000 102.3 102.3 1.70	0 102.3 228.4 1.701 0.0	228.4
	I	
Tank or Pone	d Manhole: S1.1, DS/PN: S1.010	
Inv	vert Level (m) 17.700	
Depth (m) A	Area (m²) Depth (m) Area (m²)	
0.000	175.0 2.000 175.0	
Vol	lume Summary (Static)	
Length Calcu	lations based on Centre-Centre	
	Storage	
Pipe USMH Manhol	e Pipe Structure Total	
Number Name Volume (m ³) Volume (m ³) Volume (m ³) Volume (m ³)	
S1.000 S1.10 1.	855 1.292 0.000 3.147	
S1.001 S1.9 2.	654 0.596 0.000 3.250	
S2.000 S1.8A 1.	911 1.317 0.000 3.229	
S1.002 S1.8 2.	704 0.289 0.000 2.993	
S1.003 S1.7 2.	613 2.183 0.000 4.795	
S3.000 S1.6C 1.	583 1.430 0.000 3.013	
S3.001 S1.6B 1.	546 0.615 0.000 2.161	
S4.000 S1.6D 1.	357 1.082 0.000 2.440	
S3.002 S1.6A 1.	487 0.531 0.000 2.018	
S1.004 S1.6 3.	1/4 2.807 0.000 5.980	
S5.000 S1.5B 1.	357 1.889 0.000 3.246	
S5.001 S1.5A 2.	541 1.574 0.000 4.116	
S1.005 S1.5 4.	253 2.569 0.000 6.821	
S1.006 S1.4 3.	759 1.026 0.000 4.785	
S1.007 S1.3 4.	652 1.938 0.000 6.590	
S1.008 S1.3A 3.	603 6.374 0.000 9.977	
S1.009 S1.2 2.	911 6.791 120.021 129.724	
S1.010 S1.1 2.	863 1.479 350.000 354.342	

Total 46.824 35.780 470.021 552.625

©1982-2020 Innovyze

J B Barry	v & Par	tners I.td							P	are 9
Classon Ho	1120	cherb hea			BUDTAL CDO	UND DEVELOP	MENT			
Dundrum Du		Dowle			AT CODMANS	TON / CTAMU	TINI			
Dunarum Bu	ISTHESS	PALK			AI GORMANS	ION / SIAMU	LIEN			
DUDIIN 14	(0000	14 04								Micro
Date 14/04	1/2023	14:34			Designed b	Y LORETA RA	MANAUSKE			Drainage
File 23607	-STAMU	LLEN_SWS-MIC	RODRAIN	GE_P01(.	. Checked by	SW				
Innovyze					Network 20	20.1.3				
N	Ma umber o	<u>Summai</u> Areal Hot anhole Headlo Foul Sewage of Input Hydr	Reduct Hot St Start per hec ographs	ion Fact art (min Level (m f (Globa tare (l/ 0 Num	Simulation C or 1.000 Ac s) 0 m) 0 1) 0.500 Flow s) 0.000 ber of Offlin	<u>imum Level</u> <u>riteria</u> ditional F1 MADD Fact per Person e Controls	(Rank 1) f .ow - % of .or * 10m ³ / Inlet Co n per Day (0 Number co	or Storm Total Flow ha Storage efficcient l/per/day) of Time/Are	v 0.000 2.000 0.800 0.000	rams 0
	R	Rainfall M Re Marg Duration eturn Period Climate	onclois gion Sc (in for Profile h(s) (mi (s) (yea Change	Syn otland a Flood Ri An e(s) .ns) 1 ars) (%)	nthetic Rainfa FSR M5 nd Ireland sk Warning (m alysis Timest DTS Stat 5, 30, 60, 12 1440, 2160	All Details -60 (mm) 16 Ratio R 0 m) 100.0 ep Fine In us ON 0, 180, 240 , 2880, 432	5.000 Cv (S 0.300 Cv (W DVD Stat hertia Stat s , 360, 480 0, 5760, 7	ummer) 0.3 Jinter) 0.3 Us OFF us OFF us OFF 200, 8640, 1, 3 20,	Winter 0, 960, 10080 20, 20	
	Γ	WARNING: Half	Drain '	Time has	not been cal	culated as t	the structu	ire is too	full. Water	Surcharged
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	Depth
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)
g1 000	Q1 10	15 Minton	100	1000	30/15 0	~			22 001	0 006
SI.000	01.1C	15 Winter	100	+∠Uる ⊥2N♀	30/15 Summer	-			22.091	1 1/0
S2 000	S1 8A	15 Winter	100	+20%	30/15 Summer	-			22.000	1 085
S1 002	S1 8	15 Winter	100	+20%	30/15 Summer	-			22.070	1 272
S1.002	S1 7	15 Winter	100	+20%	30/15 Summer	-			22.000	1 162
S3 000	S1 6C	15 Winter	100	+20%	50715 Summe.	-			22.017	-0 166
S3 001	S1 6B	15 Winter	100	+20%	100/15 Summe	~			23.151	0.173
S3.001	S1 6D	15 Winter	100	+20%	100/15 Winter	-			23 312	
S1.000	S1 64	15 Winter	100	+20%	30/15 Summer	-			23 111	0.351
S1 004	S1 6	15 Winter	100	+20%	30/15 Summe	-			21 996	0.772
S5 000	S1.5R	15 Winter	100	+20%	100/15 Summe	-			20.679	0.254
S5 001	S1.5A	15 Winter	100	+20%	30/15 Summe	-			20.643	0.535
S1 005	S1 5	15 Winter	100	+20%	30/15 Summe	-			20.567	0.573
S1 006	S1 4	15 Winter	100	+20%	30/15 Summe	-			20.168	0.329
S1 007	S1 3	1440 Winter	100	+20%	30/15 Summe	-			19.703	1.278
S1 008	S1.3A	1440 Winter	100	+20%	30/15 Summe	-			19.702	1.319
S1.009	S1.2	1440 Winter	100	+20%	1/600 Winter	-			19.700	1.384
s1.010	s1.1	1440 Winter	100	+20%	1/15 Winte:	<u>-</u>			19.699	1.774
1										

PN	US/MH Name	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S1.10	0.000	0.21			10.7	SURCHARGED	
S1.001	S1.9	0.000	0.49			23.3	SURCHARGED	
S2.000	S1.8A	0.000	0.34			13.5	SURCHARGED	
S1.002	S1.8	0.000	1.76			54.8	SURCHARGED	
S1.003	S1.7	0.000	1.45			59.2	SURCHARGED	
S3.000	S1.6C	0.000	0.15			8.9	OK	
S3.001	S1.6B	0.000	0.44			23.9	SURCHARGED	
			(©1982-202() Innovyze			

J.B. Barry & Partners Ltd		Page 10
Classon House	BURIAL GROUND DEVELOPMENT	
Dundrum Business Park	AT GORMANSTON / STAMULLEN	
Dublin 14		Micro
Date 14/04/2023 14:34	Designed by LORETA RAMANAUSKE	Dcainago
File 23607-STAMULLEN_SWS-MICRODRAINGE_P01(Checked by SW	Diamaye
Innovyze	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S4.000	S1.6D	0.000	0.60			41.1	SURCHARGED	
s3.002	S1.6A	0.000	1.69			90.7	SURCHARGED	
S1.004	S1.6	0.000	1.97			165.9	SURCHARGED	
S5.000	S1.5B	0.000	0.31			12.7	SURCHARGED	
S5.001	S1.5A	0.000	0.57			22.7	SURCHARGED	
S1.005	S1.5	0.000	1.58			221.1	SURCHARGED	
S1.006	S1.4	0.000	2.28			244.9	SURCHARGED	
S1.007	S1.3	0.000	0.15			20.0	SURCHARGED	
S1.008	S1.3A	0.000	0.17			19.9	SURCHARGED	
S1.009	S1.2	0.000	0.08			14.8	SURCHARGED	
S1.010	S1.1	0.000	0.04			3.0	FLOOD RISK	

APPENDIX 3: STORMTECH DESIGN MANUAL

MC-3500 & MC-7200 Design Manual

StormTech® Chamber Systems for Stormwater Management

Table of Contents

1.0	Product Information	2
2.0	Foundation for Chambers	8
3.0	Required Materials/Row Separation	11
4.0	Hydraulics	13
5.0	Cumulative Storage Volume	15
6.0	System Sizing	20
7.0	Structural Cross Sections and Specifications	22
8.0	General Notes	24
9.0	Inspection and Maintenance	25

*For SC-160LP, SC-310, SC-740 & DC-780 designs, please refer to the SC-160LP/SC-310/SC-740/DC-780 Design Manual.

StormTech Engineering Services assists design professionals in specifying StormTech stormwater systems. This assistance includes the layout of chambers to meet the engineer's volume requirements and the connections to and from the chambers. They can also assist converting and cost engineering projects currently specified with ponds, pipe, concrete vaults and other manufactured stormwater detention/ retention products. Please note that it is the responsibility of the site design engineer to ensure that the chamber bed layout meets all design requirements and is in compliance with applicable laws and regulations governing a project.

This manual is exclusively intended to assist engineers in the design of subsurface stormwater systems using StormTech chambers.

StormTech MC-3500 Chamber

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots, thus maximizing land usage for private (commercial) and public applications. StormTech chambers can also be used in conjunction with Green Infrastructure, thus enhancing the performance and extending the service life of these practices.

MC-3500 Chamber (not to scale)

Nominal Specifications

Size (LxWxH)	90" x 77" x 45" (2286 x 1956 x 1143 mm)
Chamber Storage	109.9 ft ³ (3.11 m ³)
Min. Installed Storage*	175.0 ft ³ (4.96 m ³)
Weight	134 lbs (60.8 kg)

*Assumes a minimum of 12" (300 mm) of stone above, 9" (230 mm) of stone below chambers, 6" (150 mm) of stone between chambers/end caps and 40% stone porosity.

MC-3500 Chamber (not to scale)

Nominal Specifications

Size (LxWxH)	26.5" x 71" x 45.1" (673 x 1803 x 1145 mm)
End Cap Storage	14.9 ft ³ (0.42 m ³)
Min. Installed Storage*	45.1 ft ³ (1.28 m ³)
Weight	49 lbs (22.2 kg)

*Assumes a minimum of 12" (300 mm) of stone above, 9" (230 mm) of stone below, 6" (150 mm) of stone perimeter, 6" (150 mm) of stone between chambers/end caps and 40% stone porosity.

Shipping

15 chambers/pallet 7 end caps/pallet

7 pallets/truck

"MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT, FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24" (\$20 mm)

Storage volume rel champer/End Capite (me

	Bare Unit Storage	Cham Volun	ber/End ne — Sto Depth i	Cap and ne Found n. (mm)	Stone lation
	ft³	9	12	15	18
	(m³)	(230)	(300)	(375)	(450)
Chamber	109.9	175.0	179.9	184.9	189.9
	(3.11)	(4.96)	(5.09)	(5.24)	(5.38)
End Cap	14.9	45.1	46.6	48.3	49.9
	(0.42)	(1.28)	(1.32)	(1.37)	(1.41)

Note: Assumes 6" (150 mm) row spacing, 40% stone porosity, 12" (300 mm) stone above and includes the bare chamber/end cap volume.

Amount of Stone Per Chamber

ENGLISH	S	one Foundation Depth				
tons (yd³)	9″	12″	15″	18″		
Chamber	8.5 (6.0)	9.1 (6.5)	9.7 (6.9)	10.4 (7.4)		
End Cap	3.9 (2.8)	4.1 (2.9)	4.3 (3.1)	4.5 (3.2)		
METRIC kg (m³)	230 mm	300 mm	375 mm	450 mm		
Chamber	7711 (4.6)	8255 (5.0)	8800 (5.3)	9435 (5.7)		
End Cap	3538 (2.1)	3719 (2.2)	3901 (2.4)	4082 (2.5)		

Note: Assumes 12" (300 mm) of stone above and 6" (150 mm) row spacing and 6" (150 mm) of perimeter stone in front of end caps.

Volume of Excavation Per Chamber/End Cap yd³ (m³)

	S	tone Found	lation Dept	h
	9″ (230 mm)	12″ (300 mm)	15″ (375 mm)	18" (450 mm)
Chamber	11.9 (9.1)	12.4 (9.5)	12.8 (9.8)	13.3 (10.2)
End Cap	4.0 (3.1)	4.1 (3.2)	4.3 (3.3)	4.4 (3.4)

Note: Assumes 6" (150 mm) of separation between chamber rows and 24" (600 mm) of cover. The volume of excavation will vary as depth of cover increases.

Special applications will be considered on a project by project basis. Please contact our application department should you have a unique application for our team to evaluate.

StormTech MC-7200 Chamber

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots, thus maximizing land usage for private (commercial) and public applications. StormTech chambers can also be used in conjunction with Green Infrastructure, thus enhancing the performance and extending the service life of these practices.

MC-7200 Chamber (not to scale)

Nominal Specifications

Size (LxWxH)	83.4" x 100" x 60" (2120 x 2540 x 1524 mm)
Chamber Storage	175.9 ft ³ (4.98 m ³)
Min. Installed Storage*	267.3 ft ³ (7.56 m ³)
Weight	205 lbs (92.9 kg)

*Assumes a minimum of 12" (300 mm) of stone above, 9" (230 mm) of stone below chambers, 9" (230 mm) of stone between chambers/end caps and 40% stone porosity.

MC-7200 Chamber (not to scale)

Nominal Specifications

Size (LxWxH)	38" x 90" x 61" (965 x 2286 x 1549 mm)
End Cap Storage	39.5 ft ³ (1.12 m ³)
Min. Installed Storage*	115.3 ft ³ (3.26 m ³)
Weight	90.0 lbs (40.8 kg)

*Assumes a minimum of 12" (300 mm) of stone above, 9" (230 mm) of stone below, 12" (300 mm) of stone perimeter, 9" (230 mm) of stone between chambers/end caps and 40% stone porosity.

Shipping

- 7 chambers/pallet
- 5 end caps/pallet
- 6 pallets/truck

100.0" (2540 mm)

Storage Volume Per Chamber/End Cap ft³ (m³)

	Bare Unit Storage	Chamber/End Cap and Stone Volume — Stone Foundation Depth in. (mm)									
	ft ³	9	12	15	18						
	(m ³)	(230)	(300)	(375)	(450)						
Chamber	175.9	267.3	273.3	279.3	285.2						
	(4.98)	(7.57)	(7.74)	(7.91)	(8.08)						
End Cap	39.5	115.3	111.9	121.9	125.2						
	(1.12)	(3.26)	(3.17)	(3.45)	(3.54)						

Note: Assumes 9" (230 mm) row spacing, 40% stone porosity, 12" (300 mm) stone above and includes the bare chamber/end cap volume. End cap volume assumes 12" (300 mm) stone perimeter in front of end cap.

Amount of Stone Per Chamber

ENGLISH tons	Stone Foundation Depth								
(yd³)	9″	12″	15″	18″					
Chamber	11.9 (8.5)	12.6 (9.0)	13.4 (9.6)	14.6 (10.1)					
End Cap	9.8 (7.0)	10.2 (7.3)	10.6 (7.6)	11.1 (7.9)					
METRIC kg (m ³)	230 mm	300 mm	375 mm	450 mm					
Chamber	10796 (6.5)	11431 (6.9)	12156 (7.3)	13245 (7.7)					
End Cap	8890 (5.3)	9253 (5.5)	9616 (5.8)	10069 (6.0)					

Note: Assumes 12" (300 mm) of stone above and 9" (230 mm) row spacing and 12" (300 mm) of perimeter stone in front of end caps.

Volume of Excavation Per Chamber/End Cap yd³ (m³)

	Stone Foundation Depth									
	9" (230 mm)	12″ (300 mm)	15″ (375 mm)	18" (450 mm)						
Chamber	17.2 (13.2)	17.7 (13.5)	18.3 (14.0)	18.8 (14.4)						
End Cap	9.7 (7.4)	10.0 (7.6)	10.3 (7.9)	10.6 (8.1)						

Note: Assumes 9" (230 mm) of separation between chamber rows, 12" (300 mm) of perimeter in front of the end caps, and 24" (600 mm) of cover. The volume of excavation will vary as depth of cover increases.

Special applications will be considered on a project by project basis. Please contact our application department should you have a unique application for our team to evaluate.

1.0 Product Information

1.1 Product Design

StormTech's commitment to thorough product testing programs, materials evaluation and adherence to national standards has resulted in two more superior products. Like other StormTech chambers, the MC-3500 and MC-7200 are designed to meet the full scope of design requirements of the American Society of Testing Materials (ASTM) International specification F2787 "Standard Practice for Structural Design of Thermoplastic Corrugated Wall Stormwater Collection Chambers" and produced to the requirements of the ASTM F 2418 "Standard Specification for Polypropylene (PP) Corrugated Stormwater Collection Chambers".

The StormTech MC-3500 and MC-7200 chambers provide the full AASHTO safety factors for live loads and permanent earth loads. The ASTM F 2787 standard provides specific guidance on how to design thermoplastic chambers in accordance with AASHTO Section 12.12. of the AASHTO LRFD Bridge Design Specifications. ASTM F 2787 requires that the safety factors included in the AASHTO guidance are achieved as a prerequisite to meeting ASTM F 2418. The three standards provide both the assurance of product quality and safe structural design.

The design of larger chambers in the same tradition of our other chambers required the collaboration of experts in soil-structure interaction, plastics and manufacturing. Years of extensive research, including laboratory testing and field verification, were required to produce chambers that are ready to meet both the rigors of installation and the longevity expected by engineers and owners.

This Design Manual provides the details and specifications necessary for consulting engineers to design stormwater management systems using the MC-3500 and MC-7200 chambers. It provides specifications for storage capacities, layout dimensions as well as requirements for design to ensure a long service life. The basic design concepts for foundation and backfill materials, subgrade bearing capacities and row spacing remain equally as pertinent for the MC-3500 and MC-7200 as the SC-740, SC-310 and DC-780 chamber systems. However, since many design values and dimensional requirements are different for these larger chambers than the SC-740, SC-310 and DC-780 chambers, design manuals and installation instructions are not interchangeable.

This manual includes only those details, dimensions, cover limits, etc for the MC-3500 and MC-7200 and is intended to be a stand-alone design guide for the MC-3500 and MC-7200 chambers. A Construction Guide specifically for these two chamber models has also been published.

1.2 Technical Support

The StormTech Technical Services Department is available to assist the engineer with the layout of MC-3500 and MC-7200 chamber systems and answer questions regarding all the StormTech chamber models. Call the Technical Services Department, email us at info@stormtech.com or contact your local StormTech representative.

1.3 MC-3500 and MC-7200 Chambers

All StormTech chambers are designed to the full scope of AASHTO requirements without repeating end walls or other structural reinforcing. StormTech's continuously curved, elliptical arch and the surrounding angular backfill are the key components of the structural system. With the addition of patent pending integral stiffening ribs (Figure 5), the MC-3500 and MC-7200 are assured to provide a long, safe service life. Like other StormTech chambers, the MC-3500 and MC-7200 are produced from high quality, impact modified resins which are tested for short-term and long-term mechanical properties.

With all StormTech chambers, one chamber type is used for the start, middle and end of rows. Rows are formed by overlapping the upper joint corrugation of the next chamber over the lower joint corrugation of the previous chamber (Figure 6).

1.4 Chamber Joints

All StormTech chambers are designed with an optimized joining system. The height and width of the end corrugations have been designed to provide the required structural safety factors while providing an unobstructed flow path down each row.

1.0 Product Information

To assist the contractor, StormTech chambers are molded with simple assembly instructions and arrows that indicate the direction in which to build rows. The corrugation valley immediately adjacent to the lower joint corrugation is marked "Overlap Here - Lower Joint." The corrugation valley immediately adjacent to the upper joint corrugation is marked "Build This Direction - Upper Joint."

Two people can safely and efficiently carry and place chambers without cumbersome connectors, special tools or heavy equipment. Each row of chambers must begin and end with a joint corrugation. Since joint corrugations are of a different size than the corrugations along the body of the chamber, chambers cannot be field cut and installed. Only whole MC-3500 and MC-7200 chambers can be used. For system layout assistance contact StormTech.

1.5 MC-3500 and MC-7200 End Caps

The MC-3500 and MC-7200 end caps are easy to install. These end caps are designed with a corrugation joint that fits over the top of either end of the chamber. The end cap joint is simply set over the top of either of the upper or lower chamber joint corrugations (Figure 7). The MC-3500 end cap has pipe cutting guides for 12"–24" (300 mm–600 mm) top inverts (Figure 9). The MC-7200 end cap has pipe cutting guides for 12"–

42" (300 mm–1050 mm) bottom inverts and 12"–24" (300 mm–600 mm) top inverts (Figure 8).

Standard and custom pre-cored end caps are available. MC-3500 pre-cored end caps, 18" in diameter and larger include a welded crown plate.

Figure 5 - Chamber and End Cap Components

Figure 7 - End Cap Joint Overlap

1.0 Product Information

Figure 8 - MC-7200 End Cap Inverts

Figure 9 - MC-3500 End Cap Inverts

2.0 Foundations for Chambers

2.1 Foundation Requirements

StormTech chamber systems can be installed in various soil types. The subgrade bearing capacity and the cover height over the chambers determine the required depth of clean, crushed, angular foundation stone below the chambers. Foundation stone, also called bedding, is the stone between the subgrade soils and the feet of the chamber. Flexible structures are designed to transfer a significant portion of both live and dead loads through the surrounding soils. Chamber systems accomplish this by creating load paths through the columns of embedment stone between and around the rows of chambers. This creates load concentrations at the base of the columns between the rows. The foundation stone spreads out the concentrated loads to distributed loads that can be supported by the subgrade soils.

Since increasing the cover height (top of chamber to finished grade) causes increasing soil load, a greater depth of foundation stone is necessary to distribute the load to the subgrade soils. **Table 1** and **2** specify the minimum required foundation depths for varying cover heights and allowable subgrade bearing capacities. These tables are based on StormTech service loads. The minimum required foundation depth is 9" (230 mm) for both chambers.

For additional guidance on foundation stone design please see our Technical Note 6.22 - StormTech Subgrade Performance

2.2 Weaker Soils

StormTech has not provided guidance for subgrade bearing capacities less than 2000 pounds per square foot [(2.0 ksf) (96 kPa)]. These soils are often highly vari- able, may contain organic materials and could be more sensitive to moisture. A geotechnical engineer must be consulted if soils with bearing capacities less than 2000 psf (96 kPa) are present.

2.0 Foundations for Chambers

Table 1 - MC-3500 Minimum Required Foundation Depth in inches (millimeters)Assumes 6" (150 mm) row spacing.

Cover	Minimum Bearing Resistance for Service Loads ksf (kPa)																								
Hgt. ft. (m)	4.4 (211)	4.3 (206)	4.2 (201)	4.1 (196)	4.0 (192)	3.9 (187)	3.8 (182)	3.7 (177)	3.6 (172)	3.5 (168)	3.4 (163)	3.3 (158)	3.2 (153)	3.1 (148)	3.0 (144)	2.9 (139)	2.8 (134)	2.7 (129)	2.6 (124)	2.5 (120)	2.4 (115)	2.3 (110)	2.2 (105)	2.1 (101)	2.0 (96)
1.5	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	12	12	12	15	15	15	18
(0.46)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(300)	(300)	(300)	(375)	(375)	(375)	(450)
2.0	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	12	12	12	12	15	15	15	18	18
(0.61)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(450)	(450)
2.5	9	9	9	9	9	9	9	9	9	9	9	9	9	9	12	12	12	12	12	15	15	15	18	18	21
(0.76)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(300)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(450)	(450)	(525)
3.0	9	9	9	9	9	9	9	9	9	9	9	9	9	12	12	12	12	15	15	15	18	18	18	21	21
(0.91)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(450)	(450)	(450)	(525)	(525)
3.5	9	9	9	9	9	9	9	9	9	9	9	12	12	12	12	15	15	15	15	18	18	18	21	21	24
(1.07)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(375)	(450)	(450)	(450)	(525)	(525)	(600)
4.0	9	9	9	9	9	9	9	9	9	12	12	12	12	12	15	15	15	15	18	18	21	21	21	24	24
(1.22)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(300)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(375)	(450)	(450)	(525)	(525)	(525)	(600)	(600)
4.5	9	9	9	9	9	9	9	12	12	12	12	12	15	15	15	15	18	18	18	21	21	21	24	24	27
(1.37)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(300)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(375)	(450)	(450)	(450)	(525)	(525)	(525)	(600)	(600)	(675)
5.0	9	9	9	9	9	9	12	12	12	12	12	15	15	15	15	18	18	18	21	21	24	24	24	27	30
(1.52)	(230)	(230)	(230)	(230)	(230)	(230)	(300)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(375)	(450)	(450)	(450)	(525)	(525)	(600)	(600)	(600)	(675)	(750)
5.5	9	9	9	9	12	12	12	12	12	15	15	15	15	15	18	18	18	21	21	24	24	24	27	27	30
(1.68)	(230)	(230)	(230)	(230)	(300)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(375)	(375)	(450)	(450)	(450)	(525)	(525)	(600)	(600)	(600)	(675)	(675)	(750)
6.0	9	9	9	12	12	12	12	12	15	15	15	15	15	18	18	18	21	21	21	24	24	27	27	30	30
(1.83)	(230)	(230)	(230)	(300)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(375)	(375)	(450)	(450)	(450)	(525)	(525)	(525)	(600)	(600)	(675)	(675)	(750)	(750)
6.5	9	9	12	12	12	12	12	15	15	15	15	15	18	18	18	21	21	21	24	24	27	27	30	30	30
(1.98)	(230)	(230)	(300)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(375)	(375)	(450)	(450)	(450)	(525)	(525)	(525)	(600)	(600)	(675)	(675)	(750)	(750)	(750)
7.0	12	12	12	12	12	12	15	15	15	15	15	18	18	18	21	21	21	24	24	27	27	30	30	30	30
(2.13)	(300)	(300)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(375)	(375)	(450)	(450)	(450)	(525)	(525)	(525)	(600)	(600)	(675)	(675)	(750)	(750)	(750)	(750)
7.5	12	12	12	12	12	15	15	15	15	18	18	18	18	21	21	21	24	24	27	27	27	30	30	30	30
(2.30)	(300)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(375)	(450)	(450)	(450)	(450)	(525)	(525)	(525)	(600)	(600)	(675)	(675)	(675)	(750)	(750)	(750)	(750)
8.0	12	12	12	15	15	15	15	15	18	18	18	18	21	21	21	24	24	24	27	27	30	30	30	30	30
(2.44)	(300)	(300)	(300)	(375)	(375)	(375)	(375)	(375)	(450)	(450)	(450)	(450)	(525)	(525)	(525)	(600)	(600)	(600)	(675)	(675)	(750)	(750)	(750)	(750)	(750)

NOTE: The design engineer is solely responsible for assessing the bearing resistance (allowable bearing capacity) of the subgrade soils and determining the depth of foundation stone. Subgrade bearing resistance should be assessed with consideration for the range of soil moisture conditions expected under a stormwater system.

Figure 10A - MC-3500 Structural Cross Section Detail (Not to Scale)

MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24 (600 mm).

Special applications will be considered on a project by project basis. Please contact our applications department should you have a unique application for our team to evaluate.

2.0 Foundations for Chambers

Table 2 - MC-7200 Minimum Required Foundation Depth in inches (millimeters)Assumes 9" (230 mm) row spacing.

Cover	Minimum Bearing Resistance for Service Loads ksf (kPa)																								
Hgt. ft. (m)	4.4 (211)	4.3 (206)	4.2 (201)	4.1 (196)	4.0 (192)	3.9 (187)	3.8 (182)	3.7 (177)	3.6 (172)	3.5 (168)	3.4 (163)	3.3 (158)	3.2 (153)	3.1 (148)	3.0 (144)	2.9 (139)	2.8 (134)	2.7 (129)	2.6 (124)	2.5 (120)	2.4 (115)	2.3 (110)	2.2 (105)	2.1 (101)	2.0 (96)
2.0	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	12	12	12	15	15	15	18	18	21	21
(0.61)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(300)	(300)	(300)	(375)	(375)	(375)	(450)	(450)	(525)	(525)
2.5	9	9	9	9	9	9	9	9	9	9	9	9	9	12	12	12	15	15	15	18	18	18	21	21	24
(0.76)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(300)	(300)	(300)	(375)	(375)	(375)	(450)	(450)	(450)	(525)	(525)	(600)
3.0	9	9	9	9	9	9	9	9	9	9	9	12	12	12	12	15	15	15	18	18	21	21	24	24	27
(0.91)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(450)	(450)	(525)	(525)	(600)	(600)	(675)
3.5	9	9	9	9	9	9	9	9	9	12	12	12	12	15	15	15	18	18	18	21	21	24	24	27	30
(1.07)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(450)	(450)	(450)	(525)	(525)	(600)	(600)	(675)	(750)
4.0	9	9	9	9	9	9	9	12	12	12	12	15	15	15	18	18	18	21	21	21	24	27	27	30	30
(1.22)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(450)	(450)	(450)	(525)	(525)	(525)	(600)	(675)	(675)	(750)	(750)
4.5	9	9	9	9	9	12	12	12	12	15	15	15	15	18	18	18	21	21	24	24	27	27	30	33	33
(1.37)	(230)	(230)	(230)	(230)	(230)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(375)	(450)	(450)	(450)	(525)	(525)	(600)	(600)	(675)	(675)	(750)	(825)	(825)
5.0	9	9	9	12	12	12	12	15	15	15	15	18	18	18	21	21	21	24	24	27	27	30	33	33	36
(1.52)	(230)	(230)	(230)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(375)	(450)	(450)	(450)	(525)	(525)	(525)	(600)	(600)	(675)	(675)	(750)	(825)	(825)	(900)
5.5	9	12	12	12	12	12	15	15	15	18	18	18	18	21	21	24	24	24	27	27	30	33	33	36	36
(1.68)	(230)	(300)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(450)	(450)	(450)	(450)	(525)	(525)	(600)	(600)	(600)	(675)	(675)	(750)	(825)	(825)	(900)	(900)
6.0	12	12	12	12	12	15	15	15	18	18	18	21	21	21	24	24	27	27	30	30	33	33	36	36	36
(1.83)	(300)	(300)	(300)	(300)	(300)	(375)	(375)	(375)	(450)	(450)	(450)	(525)	(525)	(525)	(600)	(600)	(675)	(675)	(750)	(750)	(825)	(825)	(900)	(900)	(900)
6.5	12	12	15	15	15	15	18	18	18	18	21	21	24	24	24	27	27	30	30	33	33	36	36	36	36
(1.98)	(300)	(300)	(375)	(375)	(375)	(375)	(450)	(450)	(450)	(450)	(525)	(525)	(600)	(600)	(600)	(675)	(675)	(750)	(750)	(825)	(825)	(900)	(900)	(900)	(900)
7.0	15	15	15	15	18	18	18	18	21	21	21	24	24	24	27	27	30	30	33	36	36	36	36	36	36
(2.13)	(375)	(375)	(375)	(375)	(450)	(450)	(450)	(450)	(525)	(525)	(525)	(600)	(600)	(600)	(675)	(675)	(750)	(750)	(825)	(900)	(900)	(900)	(900)	(900)	(900)

NOTE: The design engineer is solely responsible for assessing the bearing resistance (allowable bearing capacity) of the subgrade soils and determining the depth of foundation stone. Subgrade bearing resistance should be assessed with consideration for the range of soil moisture conditions expected under a stormwater system.

Figure 10B - MC-7200 Structural Cross Section Detail (Not to Scale)

*MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 30° (750 mm).

Special applications will be considered on a project by project basis. Please contact our applications department should you have a unique application for our team to evaluate.

3.0 Required Materials/Row Separation

3.1 Foundation and Embedment Stone

The stone surrounding the chambers consists of the foundation stone below the chambers and embedment stone surrounding the chambers. The foundation stone and embedment stone are important components of the structural system and also provide open void space for stormwater storage. Table 3 provides the stone specifications that achieve both structural requirements and a porosity of 40% for stormwater storage. Figure 11 specifies the extents of each backfill stone location.

Table 3 - Acceptable Fill Materials

	Material Location	Description	AASHTO Material Classifications	Compaction / Density Requirement
D	Final Fill: Fill Material for layer 'D' starts from the top of the 'C' layer to the bottom of flexible pavement or unpaved finished grade above. Note that pavement subbase may be part of the 'D' layer.	Any soil/rock materials, native soils, or per engineer's plans. check plans for pavement subgrade requirements.	N/A	Prepare per site design engineer's plans. Paved installations may have stringent material and preparation requirements.
C	Initial Fill: Fill material for layer 'C' starts from the top of the embedment stone ('B' layer) to 24" (600 mm) above the top of the chamber. note that pavement subbase may be a part of the 'C' layer.	Granular well-graded soil/aggregate mixtures, <35% fines or processed aggregate. most pavement subbase materials can be used in lieu of this layer.	AASHTO M145 ¹ a-1,a-2-4,a-3 or AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	Begin compactoins after 24" (600 mm) of material over the chambers is reached. compact addtional layers in 12" (300 mm) max lifts to a min. 95% proctor density for well- graded material and 95% relative density for processed aggregate materials.
В	Embedment Stone: Fill surrounding the chambers form the foudation stone ('A' layer) to the 'C' layer above.	Clean, crushed, angular stone	AASHTO M43 ¹ 3, 4	No compaction required
A	Foundation Stone: Fill below chambers from the subgrade up to the foot (bottom) of the chamber.	Clean, crushed, angular stone	AASHTO M43 ¹ 3, 4	Plate compact or roll to achieve a flat surface. ^{2 3}

Please Note:

1. The listed AASHTO designations are for gradations only. The stone must also be clean, crushed, angular. For example, a specification for #4 stone would state: "clean, crushed, angular NO. 4 (AASHTO m43) stone".

2. Stormtech compaction requirements are met for 'A' location materials when placed and compacted in 9" (230 mm) (max) lifts using two full coverages with a vibratory compactor.

 Where infiltration surfaces may be compromised by compaction, for standard design load conditions, a flat surface may be achieved by raking or dragging without compaction equipment. For special load designs, contact stormtech for compaction requirements.

Figure 11 - Fill Material Locations

Once layer 'C' is placed, any soil/material can be placed in layer 'D' up to the finished grade. Most pavement subbase soils can be used to replace the materials of layer 'C' or 'D' at the design engineer's discretion.

3.0 Required Materials/Row Separation

3.2 Fill Above Chambers

Refer to Table 3 and Figure 11 for acceptable fill material above the clean, crushed, angular stone. StormTech requires a minimum of 24" (600 mm) from the top of the chamber to the bottom of flexible pavement. For non-paved installations where rutting from vehicles may occur StormTech requires a minimum of 30" (750 mm) from top of chamber to finished grade.

3.3 Geotextile Separation

A non-woven geotextile meeting AASHTO M288 Class 2 separation requirements must be installed to completely envelope the system and prevent soil intrusion into the crushed, angular stone. Overlap adjacent geotextile rolls per AASHTO M288 separation guidelines. Contact StormTech for a list of acceptable geotextiles.

3.4 Parallel Row Separation/ Perpendicular Bed Separation

Parallel Row Separation

The minimum installed spacing between parallel rows after backfilling is 9" (230 mm) for the MC-7200 chambers and 6" (150mm) for the MC-3500 (measurement taken between the outside edges of the feet). Spacers may be used for layout convenience. Row spacing wider than the minimum spacing above may be specified.

Perpendicular Bed Separation

When beds are laid perpendicular to each other, a minimum installed spacing of 36" (900 mm) between beds is required.

3.5 Special Structural Designs

StormTech engineers may provide special structural designs to enable deeper cover depths or increase the capacity to carry higher live loads. Special designs may utilize the additional strength that can be achieved by compaction of embedment stone or by increasing the spacing between rows.

Increasing the spacing between chamber rows may also facilitate the application of StormTech chambers with either less foundation stone or with weaker subgrade soils. This may be a good option where vertical restrictions on site prevent the use of a deeper foundation.

Contact ADS Engineering Services for more information on special structural designs.

System Cross Section

Minimum Row Spacing

4.0 Hydraulics

4.1 General

StormTech subsurface chamber systems offer the flexibility for a variety of inlet and outlet configurations. Contact the StormTech Technical Services Department or your local StormTech representative for assistance configuring inlet and outlet connections.

The open graded stone around and under the chambers provides a significant conveyance capacity ranging from approximately 0.8 cfs (23 l/s) to 13 cfs (368 l/s) per MC-3500 chamber and for the MC-7200 chamber. The actual conveyance capacity is dependent upon stone size, depth of foundation stone and head of water. Although the high conveyance capacity of the open graded stone is an important component of the flow network, StormTech recommends that a system of inlet and outlet manifolds be designed to distribute and convey the peak flow through the chamber system.

It is the responsibility of the design engineer to provide the design flow rates and storage volumes for the stormwater system and to ensure that the final design meets all conveyance and storage requirements. However, StormTech will work with the design engineer to assist with manifold and chamber layouts that meet the design objectives.

4.2 The Isolator® Row Plus

The Isolator Row Plus is a system that inexpensively captures total suspended solids (TSS) and debris and provides easy access for inspection and maintenance. In a typical configuration, a single layer of ADS Plus fabric is placed between the chambers and the stone foundations. This fabric traps and filters sediments as well as protects the stone base during cleaning and maintenance. Each installed MC-3500 chamber and MC-3500 end cap provides 42.9 ft2 (4.0 m^2) and 7.5 ft² (0.7 m^2) of bottom filter area respectively. Each installed MC-7200 chamber and MC-7200 end cap provides 57.9 ft² (5.4 m^2) and 12.8 ft² (1.19 m^2) of bottom filter area respectively. The Isolator Row Plus can be configured for maintenance objectives or, in some regulatory jurisdictions, for water quality objectives. For water quality applications, the Isolator Row Plus can be sized based on water quality volume or flow rate.

All Isolator Plus Rows require: 1) a manhole for maintenance access, 2) a means of diversion of flows to the Isolator Row Plus 3) a high flow bypass and 4)FLAMP (Flared End Ramp). When used on an Isolator Row Plus, a 24" FLAMP (flared end ramp) is attached to the inside of the inlet pipe with a provided threaded rod and bolt. The FLAMP then lays on top of the ADS Plus fabric.. Flow diversion can be accomplished by either a weir in the upstream access manhole or simply by feeding the Isolator Row Plus at a lower elevation than the high flow bypass. Contact StormTech for assistance sizing Isolator Plus Rows.

When additional stormwater treatment is required, StormTech systems can be configured using a treatment train approach where other stormwater BMPs are located in series.

Figure 12 - StormTech Isolator Row Plus Detail

4.0 Hydraulics

Figure 13 - Typical Inlet Configuration With Isolator Row Plus and Scour Protection

4.3 Inlet Manifolds

The primary function of the inlet manifold is to convey and distribute flows to a sufficient number of rows in the chamber bed such that there is ample convevance capacity to pass the peak flows without creating an unacceptable backwater condition in upstream piping or scour the foundation stone under the chambers. Manifolds are connected to the end caps either at the top or bottom of the end cap. Standard distances from the base of chamber to the invert of inlet and outlet manifolds connecting to StormTech end caps can be found in table 6. High inlet flow rates from either connection location produce a shear scour potential of the foundation stone. Inlet flows from top inlets also produce impingement scour potential. Scour potential is reduced when standing water is present over the foundation stone. However, for safe design across the wide range of applications, StormTech assumes minimal standing water at the time the design flow occurs.

To minimize scour potential, StormTech recommends the installation of woven scour protection fabric at each inlet row. This enables a protected transition zone from the concentrated flow coming out of the inlet pipe to a uniform flow across the entire width of the chamber for both top and bottom connections. Allowable flow rates for design are dependent upon: the elevation of inlet pipe, foundation stone size and scour protection. With an appropriate scour protection geotextile installed from the end cap to at least 14.5 ft (4.42 m) in front of the inlet pipe for the MC-3500 and for the MC-7200, for both top and bottom feeds, the flow rates listed in Table 4 can be used for all StormTech specified foundation stone gradations.

*See StormTech's Tech Note 6.32 for manifold sizing guidance.

Table 4 - Allowable Inlet Flows*

Inlet Pipe Diameter Inches (mm)	Allowable Maximum Flow Rate cfs (l/s)
12 (300)	2.48 (70)
15 (375)	3.5 (99)
18 (450)	5.5 (156)
24 (600)	8.5 (241) [MC-3500]
24 (600)	9.5 (269) [MC-7200]

*Assumes appropriate length of scour fabric per section 4.3

Table 5 - Maximum Outlet Flow Rate Capacities From StormTech Oulet Manifolds

Pipe Diameter	Flow (CFS)	Flow (L/S)
6" (150 mm)	0.4	11.3
8" (200 mm)	0.7	19.8
10" (250 mm)	1.0	28.3
12" (300 mm)	2.0	56.6
15" (375 mm)	2.7	76.5
18" (450 mm)	4.0	113.3
24" (600 mm)	7.0	198.2
30" (750 mm)	11.0	311.5
36" (900 mm)	16.0	453.1
42" (1050 mm)	22.0	623.0
48" (1200 mm)	28.0	792.9

Table 6 - Standard Distances From Base of Chamber to Invert of Inlet and Outlet Manifolds on StormTech End Caps

	MC-3500 ENDCAPS										
	Pipe Diameter	Inv. (in)	Inv. (mm)								
	6" (150 mm)	33.21	841								
Тор	8" (200 mm)	31.16	789								
	10" (250 mm)	29.04	738								
	12" (300 mm)	26.36	671								
	15" (375 mm)	23.39	594								
	18" (450 mm)	20.03	509								
	24" (600 mm)	14.48	369								
c	12" (750 mm)	1.35	34								
ottom	15" (900 mm)	1.5	40								
	18" (1050 mm)	1.77	46								
ш	24" (1200 mm)	2.06	52								

	MC-7200 ENDCAPS											
	Pipe Diameter	Inv. (in)	Inv. (mm)									
	12" (300 mm)	35.69	907									
d	15" (375 mm)	32.72	831									
Ĕ	18" (450 mm)	29.36	746									
	24" (600 mm)	23.05	585									
c	12" (750 mm)	1.55	34									
to	15" (900 mm)	1.7	43									
Bot	18" (1050 mm)	1.97	50									
	24" (1200 mm)	2.26	57									

5.0 Cumulative Storage Volumes

4.4 Outlet Manifolds

The primary function of the outlet manifold is to convey peak flows from the chamber system to the outlet control structure. Outlet manifolds are often sized for attenuated flows. They may be smaller in diameter and have fewer row connections than inlet manifolds. In some applications however, the intent of the outlet piping is to convey an unattenuated bypass flow rate and manifolds may be sized similar to inlet manifolds.

Since chambers are generally flowing at or near full at the time of the peak outlet flow rate, scour is generally not governing and outlet manifold sizing is based on pipe flow equations. In most cases, StormTech recommends that outlet manifolds connect the same rows that are connected to an inlet manifold. This provides a continuous flow path through open conduits to pass the peak flow without dependence on passing peak flows through stone.

The primary function of the underdrains is to draw down water stored in the stone below the invert of the manifold. Underdrains are generally not sized for conveyance of the peak flow.

The maximum outlet flow rate capacities from StormTech outlet manifolds can be found in Table 5.

4.5 Inserta Tee[®] Inlet Connections

Figure 14 - Typical Inlet, Outlet and Underdrain Configuration

5.0 Cumulative Storage Volumes

Tables 7 and 8 provide cumulative storage volumes for the MC-3500 chamber and end cap. These tables can be used to calculate the stage-storage relationship for the retention or detention system. Digital spreadsheets in which the number of chambers and end caps can be input for quick cumulative storage calculations are available at www.stormtech.com. For assistance with site-specific calculations or input into routing software, contact the StormTech Technical Services Department.

Table 7 – MC-3500 Incremental Storage Volume Per Chamber

Assumes 40% stone porosity. Calculations are based upon a 9" (230 mm) stone base under the chambers, 12" (300 mm) of stone above chambers, and 6" (150 mm) of spacing between chambers.

Depth of Water in System Inches (mm)	Cumulative Chamber Storage ft ³ (m ³)	Total System Cumulative Storage ft ³ (m ³)	Depth of Water in System Inches (mm)	Cumu Chai Stoi ft ³	ılative mber rage (m³)	Total System Cumulative Storage ft ³ (m ³)
66 (1676)	• 0.00	175.02 (4.956)	32 (813)	73.52	2 (2.082)	96.98 (2.746)
65 (1651)	0.00	173.36 (4.909)	31 (787)	70.7	5 (2.003)	93.67 (2.652)
64 (1626)	0.00	171.71 (4.862)	30 (762)	67.9	2 (1.923)	90.32 (2.558)
63 (1600)	0.00	170.06 (4.816)	29 (737)	65.0	5 (1.842)	86.94 (2.462)
62 (1575)	0.00	168.41 (4.7.69)	28 (711)	62.1	2 (1.759)	83.54 (2.366)
61 (1549)	Stone 0.00	166.76 (4.722)	27 (686)	59.1	5 (1.675)	80.10 (2.268)
60 (1524)	Cover 0.00	165.10 (4.675)	26 (680)	56.1	4 (1.590)	76.64 (2.170)
59 (1499)	0.00	163.45 (4.628)	25 (635)	53.0	9 (1.503)	73.16 (2.072)
58 (1473)	0.00	161.80 (4.582)	24 (610)	49.9	9 (1.416)	69.65 (1.972)
57 (1448)	0.00	160.15 (4.535)	23 (584)	46.8	6 (1.327)	66.12 (1.872)
56 (1422)	0.00	158.49 (4.488)	22 (559)	43.7	0 (1.237)	62.57 (1.772)
55 (1397)	• 0.00	156.84 (4.441)	21 (533)	40.5	0 (1.147)	59.00 (1.671)
54 (1372)	109.95 (3.113)	155.19 (4.394)	20 (508)	37.2	7 (1.055)	55.41 (1.569)
53 (1346)	109.89 (3.112)	153.50 (4.347)	19 (483)	34.0	1 (0.963)	51.80 (1.467)
52 (1321)	109.69 (3.106)	151.73 (4.297)	18 (457)	30.72	2 (0.870)	48.17 (1.364)
51 (1295)	109.40 (3.098)	149.91 (4.245)	17 (432)	27.4	0 (0.776)	44.53 (1.261)
50 (1270)	109.00 (3.086)	148.01 (4.191)	16 (406)	24.0	5 (0.681)	40.87 (1.157)
49 (1245)	108.31 (3.067)	145.95 (4.133)	15 (381)	20.69	9 (0.586)	37.20 (1.053)
48 (1219)	107.28 (3.038)	143.68 (4.068)	14 (356)	17.29	9 (0.490)	33.51 (0.949)
47 (1194)	106.03 (3.003)	141.28 (4.000)	13 (330)	13.88	8 (0.393)	29.81 (0.844)
46 (1168)	104.61 (2.962)	138.77 (3.930)	12 (305)	10.44	4 (0.296)	26.09 (0.739)
45 (1143)	103.04 (2.918)	136.17 (3.856)	11 (279)	6.9	8 (0.198)	22.37 (0.633)
44 (1118)	101.33 (2.869)	133.50 (3.780)	10 (254)	3.5	1 (0.099)	18.63 (0.527)
43 (1092)	99.50 (2.818)	130.75 (3.702)	9 (229)	≜	0.00	14.87 (0.421)
42 (1067)	97.56 (2.763)	127.93 (3.623)	8 (203)		0.00	13.22 (0.374)
41 (1041)	95.52 (2.705)	125.06 (3.541)	7 (178)		0.00	11.57 (0.328)
40 (1016)	93.39 (2.644)	122.12 (3.458)	6 (152)		0.00	9.91 (0.281)
39 (991)	91.16 (2.581)	119.14 (3.374)	5 (127)	Stone	0.00	8.26 (0.234)
38 (965)	88.86 (2.516)	116.10 (3.288)	4 (102)		0.00	6.61 (0.187)
37 (948)	86.47 (2.449)	113.02 (3.200)	3 (76)		0.00	4.96 (0.140)
36 (914)	84.01 (2.379)	109.89 (3.112)	2 (51)		0.00	3.30 (0.094)
35 (889)	81.49 (2.307)	106.72 (3.022)	1 (25)	↓	0.00	1.65 (0.047)
34 (864)	78.89 (2.234)	103.51 (2.931)				
33 (838)	76.24 (2.159)	100.27 (2.839)				

NOTE: Add 1.65 ft³ (0.047 m³) of storage for each additional inch (25 mm) of stone foundation. Contact StormTech for cumulative volume spreadsheets in digital format.

5.0 Cumulative Storage Volume

Table 8 – MC-3500 Incremental Storage Volume Per End Cap

Assumes 40% stone porosity. Calculations are based upon a 9" (230 mm) stone base under the chambers, 12" (300 mm) of stone above end caps, and 6" (150 mm) of spacing between end caps and 6" (150 mm) of stone perimeter.

Depth of Water in System Inches (mm)	Cumulative End Cap Storage ft ³ (m ³)	Total System Cumulative Storage ft ³ (m ³)	Depth of Water in System Inches (mm)	Cumul Cham Stora ft³ (r	ative iber age n³)	Total System Cumulative Storage ft³ (m³)
66 (1676)	♦ 0.00	45.10 (1.277)	33 (838)	12.53 (0).355)	24.82 (0.703)
65 (1651)	0.00	44.55 (1.262)	32 (813)	12.18 (0).345)	24.06 (0.681)
64 (1626)	0.00	44.00 (1.246)	31 (787)	11.81 (().335)	23.30 (0.660)
63 (1600)	0.00	43.46 (1.231)	30 (762)	11.42 (0).323)	22.53 (0.638)
62 (1575)	0.00	42.91 (1.2.15)	29 (737)	11.01 (().312)	21.75 (0.616)
61 (1549)	Stone 0.00	42.36 (1.200)	28 (711)	10.58 (0	0.300)	20.96 (0.594)
60 (1524)	Cover 0.00	41.81 (1.184)	27 (686)	10.13 (().287)	20.17 (0.571)
59 (1499)	0.00	41.27 (1.169)	26 (680)	9.67 (0	.274)	19.37 (0.549)
58 (1473)	0.00	40.72 (1.153)	25 (635)	9.19 (0	.260)	18.57 (0.526)
57 (1448)	0.00	40.17 (1.138)	24 (610)	8.70 (0	.246)	17.76 (0.503)
56 (1422)	0.00	39.62 (1.122)	23 (584)	8.19 (0	.232)	16.94 (0.480)
55 (1397)	♦ 0.00	39.08 (1.107)	22 (559)	7.67 (0	.217)	16.12 (0.456)
54 (1372)	15.64 (0.443)	38.53 (1.091)	21 (533)	7.13 (0	.202)	15.29 (0.433)
53 (1346)	15.64 (0.443)	37.98 (1.076)	20 (508)	6.59 (0	.187)	14.45 (0.409)
52 (1321)	15.63 (0.443)	37.42 (1.060)	19 (483)	6.03 (0	.171)	13.61 (0.385)
51 (1295)	15.62 (0.442)	36.85 (1.043)	18 (457)	5.46 (0	.155)	12.76 (0.361)
50 (1270)	15.60 (0.442)	36.27 (1.027)	17 (432)	4.88 (0	.138)	11.91 (0.337)
49 (1245)	15.56 (0.441)	35.68 (1.010)	16 (406)	4.30 (0	.122)	11.06 (0.313)
48 (1219)	15.51 (0.439)	35.08 (0.993)	15 (381)	3.70 (0	.105)	10.20 (0.289)
47 (1194)	15.44 (0.437)	34.47 (0.976)	14 (356)	3.10 (0	.088)	9.33 (0.264)
46 (1168)	15.35 (0.435)	33.85 (0.959)	13 (330)	2.49 (0	.071)	8.46 (0.240)
45 (1143)	15.25 (0.432)	33.22 (0.941)	12 (305)	1.88 (0	.053)	7.59 (0.215)
44 (1118)	15.13 (0.428)	32.57 (0.922)	11 (279)	1.26 (0	.036)	6.71 (0.190)
43 (1092)	14.99 (0.424)	31.91 (0.904)	10 (254)	0.63 (0	.018)	5.83 (0.165)
42 (1067)	14.83 (0.420)	31.25 (0.885)	9 (229)	•	0.00	4.93 (0.139)
41 (1041)	14.65 (0.415)	30.57 (0.866)	8 (203)		0.00	4.38 (0.124)
40 (1016)	14.45 (0.409)	29.88 (0.846)	7 (178)		0.00	3.83 (0.108)
39 (991)	14.24 (0.403)	29.18 (0.826)	6 (152)	l Chan i	0.00	3.28 (0.093)
38 (965)	14.00 (0.396)	28.48 (0.806)	5 (127)	Cover	0.00	2.74 (0.077)
37 (948)	13.74 (0.389)	27.76 (0.786)	4 (102)		0.00	2.19 (0.062)
36 (914)	13.47 (0.381)	27.04 (0.766)	3 (76)		0.00	1.64 (0.046)
35 (889)	13.18 (0.373)	26.30 (0.745)	2 (51)		0.00	1.09 (0.031)
34 (864)	12.86 (0.364)	25.56 (0.724)	1 (25)		0.00	0.55 (0.015)

NOTE: Add 0.56 ft³ (0.016 m³) of storage for each additional inch (25 mm) of stone foundation. Contact StormTech for cumulative volume spreadsheets in digital format.

5.0 Cumulative Storage Volumes

Tables 9 and **10** provide cumulative storage volumes for the MC-7200 chamber and end cap. These tables can be used to calculate the stage-storage relationship for the retention or detention system. Digital spreadsheets in which the number of chambers and end caps can be input for quick cumulative storage calculations are available at www.stormtech.com. For assistance with site-specific calculations or input into routing software, contact the StormTech Technical Services Department.

Table 9 – MC-7200 Incremental Storage Volume Per Chamber

Assumes 40% stone porosity. Calculations are based upon a 9" (230 mm) stone base under the chambers, 12" (300 mm) of stone above chambers, and 9" (230 mm) of spacing between chambers.

Depth of Water in System Inches (mm)	Cumulative Chamber Storage ft ³ (m ³)	Total System Cumulative Storage ft ³ (m ³)	Depth of Water in System Inches (mm)	Cumulative Chamber Storage ft ³ (m ³)	Total System Cumulative Storage ft ³ (m ³)
81 (2057)	▲ 0.00	267.30 (7.569)	40 (1016)	118.44 (3.354)	150.94 (4.274)
80 (2032)	0.00	265.30 (7.512)	39 (991)	115.14 (3.260)	146.97 (4.162)
79 (2007)	0.00	263.30 (7.456)	38 (965)	111.80 (3.166)	142.96 (4.048)
78 (1981)	0.00	261.31 (7.399)	37 (948)	108.40 (3.070)	138.93 (3.934)
77 (1956)	0.00	259.31 (7.343)	36 (914)	104.97 (2.972)	134.87 (3.819)
76 (1930)	Stone 0.00	257.31 (7.286)	35 (889)	101.48 (2.874)	130.78 (3.703)
75 (1905)	Cover 0.00	255.32 (7.230)	34 (864)	97.96 (2.774)	126.67 (3.587)
74 (1880)	0.00	253.32 (7.173)	33 (838)	94.39 (2.673)	122.54 (3.470)
73 (1854)	0.00	251.32 (7.117)	32 (813)	90.79 (2.571)	118.38 (3.352)
72 (1829)	0.00	249.33 (7.060)	31 (787)	87.14 (2.468)	114.19 (3.234)
71 (1803)	0.00	247.33 (7.004)	30 (762)	83.46 (2.363)	109.99 (3.114)
70 (1778)	• 0.00	245.33 (6.947)	29 (737)	79.75 (2.258)	105.76 (2.995)
69 (1753)	175.90 (4.981)	243.33 (6.890)	28 (711)	76.00 (2.152)	101.52 (2.875)
68 (1727)	175.84 (4.979)	241.30 (6.833)	27 (686)	72.22 (2.045)	97.25 (2.754)
67 (1702)	175.65 (4.974)	239.19 (6.773)	26 (680)	68.41 (1.937)	92.97 (2.632)
66 (1676)	175.38 (4.966)	237.03 (6.712)	25 (610)	64.56 (1.828)	88.66 (2.511)
65 (1651)	175.02 (4.956)	234.82 (6.649)	24 (609)	60.69 (1.719)	84.34 (2.388)
64 (1626)	174.56 (4.943)	232.54 (6.585)	23 (584)	56.80 (1.608)	80.01 (2.266)
63 (1600)	173.82 (4.922)	230.10 (6.516)	22 (559)	52.87 (1.497)	75.66 (2.142)
62 (1575)	172.72 (4.891)	227.45 (6.441)	21 (533)	48.92 (1.385)	71.29 (2.019)
61 (1549)	171.41 (4.854)	224.66 (6.362)	20 (508)	44.95 (1.273)	66.91 (1.895)
60 (1524)	169.91 (4.811)	221.76 (6.280)	19 (483)	40.96 (1.160)	62.52 (1.770)
59 (1499)	168.25 (4.764)	218.77 (6.195)	18 (457)	36.94 (1.046)	58.11 (1.646)
58 (1473)	166.46 (4.714)	215.70 (6.108)	17 (432)	32.91 (0.932)	53.69 (1.520)
57 (1448)	164.53 (4.659)	212.55 (6.019)	16 (406)	28.85 (0.817)	49.26 (1.395)
56 (1422)	162.50 (4.602)	209.33 (5.928)	15 (381)	24.78 (0.702)	44.82 (1.269)
55 (1397)	160.36 (4.541)	206.05 (5.835)	14 (356)	20.69 (0.586)	40.37 (1.143)
54 (1372)	158.11 (4.477)	202.70 (5.740)	13 (330)	16.58 (0.469)	35.91 (1.017)
53 (1346)	155.77 (4.411)	199.30 (5.644)	12 (305)	12.46 (0.353)	31.44 (0.890)
52 (1321)	153.33 (4.342)	195.84 (5.546)	11 (279)	8.32 (0.236)	26.96 (0.763)
51 (1295)	150.81 (4.271)	192.33 (5.446)	10 (254)	4.17 (0.118)	22.47 (0.636)
50 (1270)	148.21 (4.197)	188.78 (5.346)	9 (229)	0.00	17.97 (0.509)
49 (1245)	145.53 (4.121)	185.17 (5.244)	8 (203)	0.00	15.98 (0.452)
48 (1219)	142.78 (4.043)	181.52 (5.140)	7 (178)	0.00	13.98 (0.396)
47 (1194)	139.96 (3.963)	177.83 (5.036)	6 (152)	0.00	11.98 (0.339)
46 (1168)	137.07 (3.881)	174.10 (4.930)	5 (127)	Cover 0.00	9.99 (0.283)
45 (1143)	134.11 (3.798)	170.33 (4.823)	4 (102)	0.00	7.99 (0.226)
44 (1118)	131.09 (3.712)	166.52 (4.715)	3 (76)	0.00	5.99 (0.170)
43 (1092)	128.01 (3.625)	162.68 (4.607)	2 (51)	0.00	3.99 (0.113)
42 (1067)	124.88 (3.536)	158.80 (4.497)	1 (25)	▼ 0.00	2.00 (0.057)
59 (1499) 58 (1473) 57 (1448) 56 (1422) 55 (1397) 54 (1372) 53 (1346) 52 (1321) 51 (1295) 50 (1270) 49 (1245) 48 (1219) 47 (1194) 46 (1168) 45 (1143) 44 (1118) 43 (1092) 42 (1067) 41 (1041)	168.25 (4.764) 166.46 (4.714) 164.53 (4.659) 162.50 (4.602) 160.36 (4.541) 158.11 (4.477) 155.77 (4.411) 153.33 (4.342) 150.81 (4.271) 148.21 (4.197) 145.53 (4.121) 142.78 (4.043) 139.96 (3.963) 137.07 (3.881) 134.11 (3.798) 131.09 (3.712) 128.01 (3.625) 124.88 (3.536) 121.68 (3.446)	218.77 (6.195) 215.70 (6.108) 212.55 (6.019) 209.33 (5.928) 206.05 (5.835) 202.70 (5.740) 199.30 (5.644) 195.84 (5.546) 192.33 (5.446) 188.78 (5.346) 185.17 (5.244) 181.52 (5.140) 177.83 (5.036) 174.10 (4.930) 170.33 (4.823) 166.52 (4.715) 162.68 (4.607) 158.80 (4.497) 154.89 (4.386)	18 (457) 17 (432) 16 (406) 15 (381) 14 (356) 13 (330) 12 (305) 11 (279) 10 (254) 9 (229) 8 (203) 7 (178) 6 (152) 5 (127) 4 (102) 3 (76) 2 (51) 1 (25)	36.94 (1.046) 32.91 (0.932) 28.85 (0.817) 24.78 (0.702) 20.69 (0.586) 16.58 (0.469) 12.46 (0.353) 8.32 (0.236) 4.17 (0.118) ▲ 0.00 0.00 0.00 0.00 Stone Cover 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	58.11 (1.646) 53.69 (1.520) 49.26 (1.395) 44.82 (1.269) 40.37 (1.143) 35.91 (1.017) 31.44 (0.890) 26.96 (0.763) 22.47 (0.636) 17.97 (0.509) 15.98 (0.452) 13.98 (0.396) 11.98 (0.339) 9.99 (0.283) 7.99 (0.226) 5.99 (0.170) 3.99 (0.113) 2.00 (0.057)

NOTE: Add 2.00 ft³ (0.057 m³) of storage for each additional inch (25 mm) of stone foundation. Contact StormTech for cumulative volume spreadsheets in digital format.

5.0 Cumulative Storage Volumes

Table 10 – MC-7200 Incremental Storage Volume Per End Cap

Assumes 40% stone porosity. Calculations are based upon a 9" (230 mm) stone base under the chambers, 12" (300 mm) of stone above end caps, and 9" (230 mm) of spacing between end caps and 6" (150 mm) of stone perimeter.

Depth of Water in System Inches (mm)	Cumulative End Cap Storage ft³ (m³)	Total System Cumulative Storage ft ³ (m ³)	Depth of Water in System Inches (mm)	Cumເ End Cap ft ³	llative Storage (m³)	Total System Cumulative Storage ft ³ (m ³)
81 (2057)	0.00	115.28 (3.264)	40 (1016)	29.30	(0.830)	62.80 (1.778)
80 (2032)	0.00	114.15 (3.232)	39 (991)	28.58	(0.809)	61.23 (1.734)
79 (2007)	0.00	113.02 (3.200)	38 (965)	27.84	(0.788)	59.65 (1.689)
78 (1981)	0.00	111.89 (3.168)	37 (948)	27.07	(0.767)	58.07 (1.644)
77 (1956)	0.00	110.76 (3.136)	36 (914)	26.29	(0.744)	56.46 (1.599)
76 (1930)	Stone 0.00	109.63 (3.104)	35 (889)	25.48	(0.722)	54.85 (1.553)
75 (1905)	Cover 0.00	108.50 (3.072)	34 (864)	24.66	(0.698)	53.23 (1.507)
74 (1880)	0.00	107.37 (3.040)	33 (838)	23.83	(0.675)	51.60 (1.461)
73 (1854)	0.00	106.24 (3.008)	32 (813)	22.98	(0.651)	49.96 (1.415)
72 (1829)	0.00	105.11 (2.976)	31 (787)	22.12	(0.626)	48.31 (1.368)
71 (1803)	0.00	103.98 (2.944)	30 (762)	21.23	(0.601)	46.65 (1.321)
70 (1778)	♦ 0.00	102.85 (2.912)	29 (737)	20.32	(0.575)	44.97 (1.273)
69 (1753)	39.54 (1.120)	101.72 (2.880)	28 (711)	19.40	(0.549)	43.29 (1.226)
68 (1727)	39.53 (1.119)	100.58 (2.848)	27 (686)	18.48	(0.523)	41.61 (1.178)
67 (1702)	39.50 (1.118)	99.43 (2.816)	26 (680)	17.54	(0.497)	39.91 (1.130)
66 (1676)	39.45 (1.117)	98.27 (2.783)	25 (610)	16.59	(0.470)	38.21 (1.082)
65 (1651)	39.38 (1.115)	97.10 (2.750)	24 (609)	15.62	(0.442)	36.50 (1.033)
64 (1626)	39.30 (1.113)	95.92 (2.716)	23 (584)	14.64	(0.414)	34.78 (0.985)
63 (1600)	39.19 (1.110)	94.73 (2.682)	22 (559)	13.66	(0.387)	33.07 (0.936)
62 (1575)	39.06 (1.106)	93.52 (2.648)	21 (533)	12.66	(0.359)	31.33 (0.887)
61 (1549)	38.90 (1.101)	92.29 (2.613)	20 (508)	11.65	(0.330)	29.60 (0.838)
60 (1524)	38.71 (1.096)	91.04 (2.578)	19 (483)	10.63	(0.301)	27.85 (0.3789)
59 (1499)	38.49 (1.090)	89.78 (2.542)	18 (457)	9.60 (0.272)	26.11 (0.739)
58 (1473)	38.24 (1.083)	88.50 (2.506)	17 (432)	8.56 (0.242)	24.35 (0.690)
57 (1448)	37.97 (1.075)	87.21 (2.469)	16 (406)	7.51 (0.213)	22.59 (0.640)
56 (1422)	37.67 (1.067)	85.90 (2.432)	15 (381)	6.46 (0.183)	20.83 (0.590)
55 (1397)	37.34 (1.057)	84.57 (2.395)	14 (356)	5.41 (0.153)	19.07 (0.540)
54 (1372)	36.98 (1.047)	83.23 (2.357)	13 (330)	4.35 (0.123)	17.31 (0.490)
53 (1346)	36.60 (1.036)	81.87 (2.318)	12 (305)	3.28 (0.093)	15.53 (0.440)
52 (1321)	36.19 (1.025)	80.49 (2.279)	11 (279)	2.19 (0.062)	13.75 (0.389)
51 (1295)	35.75 (1.012)	79.10 (2.240)	10 (254)	1.11 (0.031)	11.97 (0.339)
50 (1270)	35.28 (0.999)	77.69 (2.200)	9 (229)	•	0.00	10.17 (0.288)
49 (1245)	34.79 (0.985)	76.26 (2.159)	8 (203)		0.00	9.04 (0.256)
48 (1219)	34.27 (0.970)	74.82 (2.119)	7 (178)		0.00	7.91 (0.224)
47 (1194)	33.72 (0.955)	73.36 (2.077)	6 (152)	Stone	0.00	6.78 (0.192)
46 (1168)	33.15 (0.939)	71.89 (2.036)	5 (127)	Cover	0.00	5.65 (0.160)
45 (1143)	32.57 (0.922)	70.40 (1.994)	4 (102)		0.00	4.52 (0.128)
44 (1118)	31.96 (0.905)	68.91 (1.951)	3 (76)		0.00	3.39 (0.096)
43 (1092)	31.32 (0.887)	67.40 (1.909)	2 (51)		0.00	2.26 (0.064)
42 (1067)	30.68 (0.869)	65.88 (1.866)	1 (25)	*	0.00	1.13 (0.032)
41 (1041)	30.00 (0.850)	64.35 (1.822)				

NOTE: Add 1.08 ft³ (0.031 m³) of storage for each additional inch (25 mm) of stone foundation. Contact StormTech for cumulative volume spreadsheets in digital format.

6.0 MC-3500 Chamber System Sizing

The following steps provide the calculations necessary for preliminary sizing of an MC-3500 chamber system. For custom bed configurations to fit specific sites, contact the StormTech Technical Services Department or your local StormTech representative.

1) Determine the amount of storage volume (VS) required. It is the design engineer's sole responsibility to determine the storage volume required.

Table 11 - Storage Volume Per Chamber/End Cap ft³ (m³)

	Bare Unit Storage	Chan Volur	Stone ation		
	ft ³	9	12	15	18
	(m ³)	(230)	(300)	(375)	(450)
MC-3500	109.9	175.0	179.9	184.9	189.9
Chamber	(3.11)	(4.96)	(5.09)	(5.24)	(5.38)
MC-3500	14.9	45.1	46.6	48.3	49.9
End Cap	(0.42)	(1.28)	(1.32)	(1.37)	(1.41)

NOTE: Assumes 6" (150 mm) row spacing, 40% stone porosity, 12" (300 mm) stone above and includes the bare chamber/end cap volume. End cap volume assumes 6" (150 mm) stone perimeter.

2) Determine the number of chambers (C) required.

To calculate the number of chambers required for adequate storage, divide the storage volume (Vs) by the storage volume of the chamber (from **Table 11**), as follows: **C** = **Vs** / **Storage Volume per Chamber**

3) Determine the number of end caps required.

The number of end caps (EC) required depends on the number of rows required by the project. Once the num- ber of chamber rows is determined, multiply the number of chamber rows by 2 to determine the number of end caps required. **EC = No. of Chamber Rows x 2**

NOTE: Additional end caps may be required for systems having inlet locations within the chamber bed.

4) Determine additional storage provided by end caps.

End Caps will provide additional storage to the project. Multiply the number of end caps (EC) by the storage volume per end cap (ECS) to determine the additional storage (As) provided by the end caps. **As = EC x ECs**

5) Adjust number of chambers (C) to account for additional end cap storage (As). The original number of chambers (C) can now be reduced due to the additional storage in the end caps. Divide the additional storage (As) by the storage volume per chamber to determine the number of chambers that can be removed. Number of chambers to remove = As/ volume per chamber

NOTE: Additional storage exists in the stone perimeter as well as in the inlet and outlet manifold systems. Contact StormTech's Technical Services Department for assistance with determining the number of chambers and end caps required for your project.

6) Determine the required bed size (S).

the area numbers above.

The size of the bed will depend on the number of chambers and end caps required:

MC-3500 area per chamber = 49.6 ft² (4.6 m²) MC-3500 area per end cap = 16.4 ft² (1.5 m²)

S = (C x area per chamber) + (EC x area per end cap) **NOTE:** It is necessary to add 12" (300 mm) of stone perimeter parallel to the chamber rows and 6" (150 mm) of stone perimeter from the base of all end caps. The additional area due to perimeter stone is not included in

7) Determine the amount of stone (Vst) required.

To calculate the total amount of clean, crushed, angular stone required, multiply the number of chambers (C) and the number of end caps (EC) by the selected weight of stone from **Table 12**. **NOTE:** Clean, crushed, angular stone is also required around the perimeter of the system.

Table 12 - Amount of Stone Per Chamber/End Cap

ENGLISH	Stone Foundation Depth						
tons (yd ³)	9″	12″	15″	18″			
Chamber	8.5 (6.0)	9.1 (6.5)	9.7 (6.9)	10.4 (7.4)			
End Cap	3.9 (2.8)	4.1 (2.9)	4.3 (3.1)	4.5 (3.2)			
METRIC kg (m³)	230 mm	300 mm	375 mm	450 mm			
Chamber	7711 (4.6)	8255 (5.0)	8800 (5.3)	9435 (5.7)			
End Cap	3538 (2.1)	3719 (2.2)	3901 (2.4)	4082 (2.5)			

NOTE: Assumes 12" (300 mm) of stone above, and 6" (150 mm) row spacing, and 6" (150 mm) of perimeter stone in front of end caps.

8) Determine the volume of excavation (Ex) required. Each additional foot of cover will add a volume of excavation of 1.9 yd³ (1.5 m³) per MC-3500 chamber and 0.6 yd³ (0.5 m³) per MC-3500 end cap.

Table 13—Volume of Excavation Per Chamber/End Cap yd³ (m³)

	Stone Foundation Depth							
	9" (230 mm)	12″ (300 mm)	15″ (375 mm)	18" (450 mm)				
Chamber	11.9 (9.1)	12.4 (9.5)	12.8 (9.8)	13.3 (10.2)				
End Cap	4.0 (3.1)	4.1 (3.2)	4.3 (3.3)	4.4 (3.4)				

NOTE: Assumes 6" (150 mm) separation between chamber rows, 6" (150 mm) of perimeter in front of end caps, and 24" (600 mm) of cover. The volume of excavation will vary as the depth of cover increases.

9) Determine the area of geotextile (F) required.

The bottom, top and sides of the bed must be covered with a non-woven geotextile (filter fabric) that meets AASHTO M288 Class 2 requirements. The area of the sidewalls must be calculated and a 24" (600 mm) overlap must be included for all seams. Geotextiles typically come in 15 foot (4.57 m) wide rolls.

6.0 MC-7200 Chamber System Sizing

The following steps provide the calculations necessary for preliminary sizing of an MC-7200 chamber system. For custom bed configurations to fit specific sites, contact the StormTech Technical Services Department or your local StormTech representative.

1) Determine the amount of storage volume (VS) required. It is the design engineer's sole responsibility to determine the storage volume required.

Table 14 - Storage Volume Per Chamber/End Cap ft³ (m³)

	Bare Unit Storage	Chamber/End Cap and Stone Volume — Stone Foundation Depth in. (mm)				
	ft³	9	12	15	18	
	(m³)	(230)	(300)	(375)	(450)	
MC-7200	175.9	267.3	273.3	279.3	285.2	
Chamber	(4.98)	(7.57)	(7.74)	(7.91)	(8.08)	
MC-7200	39.5	115.3	118.6	121.9	125.29	
End Cap	(1.12)	(3.26)	(3.36)	(3.45)	(3.54)	

NOTE: Assumes 9" (230 mm) row spacing, 40% stone porosity, 12" (300 mm) stone above and includes the bare chamber/end cap volume. End cap volume assumes 12" (300 mm) stone perimeter.

2) Determine the number of chambers (C) required.

To calculate the number of chambers required for adequate storage, divide the storage volume (Vs) by the storage volume of the chamber (from **Table 14**), as follows: **C** = Vs / Storage Volume per Chamber

3) Determine the number of end caps required.

The number of end caps (EC) required depends on the number of rows required by the project. Once the number of chamber rows is determined, multiply the number of chamber rows by 2 to determine the number of end caps required. **EC = No. of Chamber Rows x 2**

NOTE: Additional end caps may be required for systems having inlet locations within the chamber bed.

4) Determine additional storage provided by end caps.

End Caps will provide additional storage to the project. Multiply the number of end caps (EC) by the storage volume per end cap (ECS) to determine the additional storage (As) provided by the end caps. **As** = **EC x ECs**

5) Adjust number of chambers (C) to account for additional end cap storage (As). The original number of chambers (C) can now be reduced due to the additional storage in the end caps. Divide the additional storage (As) by the storage volume per chamber to determine the number of chambers that can be removed. Number of chambers to remove = As/ volume per chamber **NOTE:** Additional storage exists in the stone perimeter as well as in the inlet and outlet manifold systems. Contact StormTech's Technical Services Department for assistance with determining the number of chambers and end caps required for your project.

6) Determine the required bed size (S).

The size of the bed will depend on the number of chambers and end caps required:

MC-7200 area per chamber = 59.9 ft² (5.6 m²) MC-7200 area per end cap = 33.9 ft² (3.1 m²) $S = (C \times area per chamber) + (EC \times area per end cap$

S = (C x area per chamber) + (EC x area per end cap)

NOTE: It is necessary to add 12" (300 mm) of stone perimeter parallel to the chamber rows and 6" (150 mm) of stone perimeter from the base of all end caps. The additional area due to perimeter stone is not included in the area numbers above.

7) Determine the amount of stone (Vst) required. To calculate the total amount of clean, crushed,

angular stone required, multiply the number of chambers (C) and the number of end caps (EC) by the selected weight of stone from **Table 15.**

NOTE: Clean, crushed, angular stone is also required around the perimeter of the system.

Table 15 - Amount of Stone Per Chamber/End Cap

ENGLISH	Stone Foundation Depth						
tons (yd ³)	9″ 12″		15″	18″			
Chamber	11.9 (8.5)	12.6 (9.0)	13.4 (9.6)	14.6 (10.1)			
End Cap	9.8 (7.0)	10.2 (7.3)	10.6 (7.6)	11.1 (7.9)			
METRIC kg (m³)	230 mm	300 mm	375 mm	450 mm			
Chamber	10796 (6.5)	11431 (6.9)	12156 (7.3)	13245 (7.7)			
End Cap	8890 (5.3)	9253 (5.5)	9616 (5.8)	10069 (6.0)			
		\ -		\			

NOTE: Assumes 12" (300 mm) of stone above, and 9" (230 mm) row spacing, and 12" (300 mm) of perimeter stone in front of end caps.

8) Determine the volume of excavation (Ex) required.

Each additional foot of cover will add a volume of excavation of 2.2 yd³ (1.7 m³) per MC-7200 chamber and 1.4 yd³ (0.8 m³) per MC-7200 end cap.

Table 13- Volume of Excavation Per Chamber/End Cap yd³ (m³)

	Stone Foundation Depth						
	9″ (230 mm)	12″ (300 mm)	15″ (375 mm)	18" (450 mm)			
Chamber	17.2 (13.2)	17.7 (13.5)	18.3 (14.0)	18.8 (14.4)			
End Cap	9.7 (7.4)	10.0 (7.6)	10.3 (7.9)	10.6 (8.1)			

NOTE: Assumes 9" (230 mm) separation between chamber rows, 12" (300 mm) of perimeter in front of end caps, and 24" (600 mm) of cover. The volume of excavation will vary as the depth of cover increases.

9) Determine the area of geotextile (F) required.

The bottom, top and sides of the bed must be covered with a non-woven geotextile (filter fabric) that meets AASHTO M288 Class 2 requirements. The area of the sidewalls must be calculated and a 24" (600 mm) overlap must be included for all seams. Geotextiles typically come in 15 foot (4.57 m) wide rolls.

7.0 Structural Cross Sections and Specifications

Figure 16A - MC-3500 Structural Cross Section Detail (Not to Scale)

Special applications will be considered on a project by project basis. Please contact our application department should you have a unique application for our team to evaluate.

MC-3500 Stormwater Chamber Specifications

- 1. Chambers shall be StormTech MC-3500 or approved equal.
- 2. Chambers shall be made from virgin, impactmodified polypropylene copolymers.
- 3. Chamber rows shall provide continuous, unobstructed internal space with no internal panels that would impede flow.
- 4. The structural design of the chambers, the structural backfill and the installation requirements shall ensure that the load factors specified in the AASHTO LRFD Bridge Design Specifications, Section 12.12 are met for: 1) longduration dead loads and 2) short-duration live loads, based on the AASHTO Design Truck with consideration for impact and multiple vehicle presences.
- 5. Chambers shall meet the requirements of ASTM F 2418, "Standard Specification for Polypropylene (PP) Corrugated Wall Stormwater Collection Chambers."
- 6. Chambers shall conform to the requirements of ASTM F 2787, "Standard Practice for Structural Design of Thermoplastic Corrugated Wall Stormwater Collection Chambers."

- 7. Only chambers that are approved by the engineer will be allowed. The contractor shall submit (3 sets) of the following to the engineer for approval before delivering chambers to the project site:
 - A structural evaluation by a registered structural engineer that demonstrates that the load factors specified in the AASHTO LRFD Bridge Design Specifications, Section 12.12 are met. The 50-year creep modulus data specified in ASTM F 2418 must be used as part of the AASHTO structural evaluation to verify long-term performance.
 - Structural cross section detail on which the structural cross section is based.
- 8. The installation of chambers shall be in accordance with the manufacturer's latest Construction Guide.

Detail drawings available in Cad Rev. 2000 format at www.stormtech.com

7.0 Structural Cross Sections and Specifications

Figure 16B - MC-7200 Structural Cross Section Detail (Not to Scale)

Special applications will be considered on a project by project basis. Please contact our application department should you have a unique application for our team to evaluate.

MC-7200 Stormwater Chamber Specifications

- 1. Chambers shall be StormTech MC-7200 or approved equal.
- 2. Chambers shall be made from virgin, impactmodified polypropylene copolymers.
- 3. Chamber rows shall provide continuous, unobstructed internal space with no internal panels that would impede flow.
- 4. The structural design of the chambers, the structural backfill and the installation requirements shall ensure that the load factors specified in the AASHTO LRFD Bridge Design Specifications, Section 12.12 are met for: 1) longduration dead loads and 2) short-duration live loads, based on the AASHTO Design Truck with consideration for impact and multiple vehicle presences.
- 5. Chambers shall meet the requirements of ASTM F 2418, "Standard Specification for Polypropylene (PP) Corrugated Wall Stormwater Collection Chambers."
- 6. Chambers shall conform to the requirements of ASTM F 2787, "Standard Practice for Structural Design of Thermoplastic Corrugated Wall Stormwater Collection Chambers."

- Only chambers that are approved by the engineer will be allowed. The contractor shall submit (3 sets) of the following to the engineer for approval before delivering chambers to the project site:
 - A structural evaluation by a registered structural engineer that demonstrates that the load factors specified in the AASHTO LRFD Bridge Design Specifications, Section 12.12 are met. The 50-year creep modulus data specified in ASTM F 2418 must be used as part of the AASHTO structural evaluation to verify longterm performance.
 - Structural cross section detail on which the structural cross section is based.
- 8. The installation of chambers shall be in accordance with the manufacturer's latest Construction Guide.

Detail drawings available in Cad Rev. 2000 format at www.stormtech.com

8.0 General Notes

- StormTech requires installing contractors to use and understand the latest StormTech MC-3500 and MC-7200 Construction Guides prior to beginning system installation.
- 2. StormTech offers installation consultations to installing contractors. Contact our Technical Service Department or local StormTech representative at least 30 days prior to system installation to arrange a pre-installation consultation. Our representatives can then answer questions or address comments on the StormTech chamber system and inform the installing contractor of the minimum installation requirements before beginning the system's construction. Call 860-529-8188 to speak to a Technical Service Representative or visit www.stormtech.com to receive a copy of our Construction Guide.
- 3. StormTech requirements for systems with pavement design (asphalt, concrete pavers, etc.): Minimum cover is 18" (450mm) for the MC-3500 and 24"(600mm) for the MC-7200 not including pavement; MC-3500 maximum cover is 8.0' (1.98 m) and MC-7200 maximum cover is 7.0' (2.43 m) both including pavement. For designs with cover depths deeper than these maximums, please contact Stormtech. For installations that do not include pavement, where rutting from vehicles may occur, minimum required cover is increased to 30" (762 mm).
- 4. The contractor must report any discrepancies with the bearing capacity of the subgrade materials to the design engineer.

- 5. AASHTO M288 Class 2 non-woven geotextile (ADS601 or equal) (filter fabric) must be used as indicated in the project plans.
- Stone placement between chamber rows and around perimeter must follow instructions as indicated in the most current version of StormTech MC-3500 / MC-7200 Construction Guides.
- 7. Backfilling over the chambers must follow requirements as indicated in the most current version of StormTech MC-3500 / MC-7200 Construction Guides.
- 8. The contractor must refer to StormTech MC-3500 / MC-7200 Construction Guides for a Table of Acceptable Vehicle Loads at various depths of cover. This information is also available at the StormTech website: www.stormtech.com. The contractor is responsible for preventing vehicles that exceed StormTech requirements from traveling across or parking over the stormwater system. Temporary fencing, warning tape and appropriately located signs are commonly used to prevent unauthorized vehicles from entering sensitive construction areas.
- The contractor must apply erosion and sediment control measures to protect the stormwater system during all phases of site construction per local codes and design engineer's specifications.
- 10. STORMTECH PRODUCT WARRANTY IS LIMITED. Contact StormTech for warranty information.

9.0 Inspection and Maintenance

9.1 Isolator Row Plus Inspection

Regular inspection and maintenance are essential to assure a properly functioning stormwater system. Inspection is easily accomplished through the manhole or optional inspection ports of an Isolator Row Plus. Please follow local and OSHA rules for a confined space entry.

Inspection ports can allow inspection to be accomplished completely from the surface without the need for a con- fined space entry. Inspection ports provide visual access to the system with the use of a flashlight. A stadia rod may be inserted to determine the depth of sediment. If upon visual inspection it is found that sediment has accumulated to an average depth exceeding 3" (76 mm), cleanout is required.

A StormTech Isolator Row Plus should initially be inspected immediately after completion of the site's construction. While every effort should be made to prevent sediment from entering the system during construction, it is during this time that excess amounts of sediments are most likely to enter any stormwater system. Inspection and maintenance, if necessary, should be performed prior to passing responsibility over to the site's owner. Once in normal service, a StormTech Isolator Row Plus should be inspected bi-annually until an understanding of the sites characteristics is developed. The site's maintenance manager can then revise the inspection schedule based on experience or local requirements.

9.2 Isolator Row Plus Maintenance

JetVac maintenance is recommended if sediment has been collected to an average depth of 3" (76 mm) inside the Isolator Row Plus. More frequent maintenance may be required to maintain minimum flow rates through the Isolator Row Plus. The JetVac process utilizes a high pressure water nozzle to propel itself down the Isolator Row Plus while scouring and suspending sediments. As the nozzle is retrieved, a wave of suspended sediments is flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/ JetVac combi- nation vehicles. Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear facing jets with an effective spread of at least 45" (1143 mm) are best. StormTech recommends a maximum nozzle pressure of 2000 psi be utilized during cleaning. The JetVac process shall only be performed on StormTech Rows that have ADS Plus fabric over the foundation stone. A Flamp (flared end ramp) is attached to the inlet pipe on the inside of the chamber end cap to provide a smooth transition from pipe invert to fabric bottom. It is configured to improve chamber function performance over time by distributing sediment and debris that would otherwise collect at the inlet. It also serves to improve the fluid and solid flow back into the inlet pipe during maintenance and cleaning, and to guide cleaning and inspection equipment back into the inlet pipe when complete.

Flamp (Flared End Ramp)

A typical JetVac truck (This is not a StormTech product.)

Examples of culvert cleaning nozzles appropriate for Isolator Row Plus maintenance. (These are not StormTech products).

A Family of Products and Services for the Stormwater Industry:

MC-3500 and MC-7200 Chambers and End Caps SC-160LP, SC-310 and SC-740 Chambers & End Caps DC-780 Chambers and End Caps Fabricated End Caps Fabricated Manifold Fittings Patented Isolator Row PLUS for Maintenance and Water Quality Chamber Separation Spacers In-House System Layout Assistance On-Site Educational Seminars Worldwide Technical Sales Group Centralized Product Applications Department Research and Development Team Technical Literature, O&M Manuals and Detailed CAD drawings all downloadable via our Website

StormTech provides state-of-the-art products and services that meet or exceed industry performance standards and expectations. We offer designers, regulators, owners and contractors the highest quality products and services for stormwater management that Saves Valuable Land and Protects Water Resources.

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com Advanced Drainage Systems, the ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. StormTech® and the Isolator® Row PLUS are registered trademarks of StormTech, Inc. © 2022 Advanced Drainage Systems, Inc. #11116 3/22 CS adspipe.com 800-821-6710

